Skip to main content
Log in

Analytically elegant and computationally efficient results in terms of roots for the \(GI^{X}/M/c\) queueing system

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

An elegant and simple solution to determine the distributions of queue length at different epochs and the waiting time for the model \(GI^{X}/M/c\) is presented. In the past, the model \(GI^{X}/M/c\) has been extensively analyzed using various techniques by many authors. The purpose of this paper is to present a simple and effective derivation of the analytic solution for pre-arrival epoch probabilities as a linear combination of specific geometric terms (except for the boundary probabilities when the number of servers is greater than the maximum batch size) involving the roots of the underlying characteristic equation. The solution is then leveraged to compute the waiting-time distributions of both first and arbitrary customers of an incoming batch. Numerical examples with various arrival patterns and batch size distributions are also presented. The method that is being proposed here not only gives an alternate solution to the existing methods, but it is also analytically simple, easy to implement, and computationally efficient. It is hoped that the results obtained will prove beneficial to both theoreticians and practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abol’nikov, L.M.: A multichannel queueing system with group arrival of demands. EngngCybernet 4, 39–48 (1967)

    Google Scholar 

  2. Breuer, L., Baum, D.: An Introduction to Queueing Theory and Matrix-Analytic Methods. Springer, Berlin (2005)

    Google Scholar 

  3. Burke, P.J.: Delays in single-server queues with batch input. Ops Res. 23, 830–833 (1975)

    Article  Google Scholar 

  4. Chakka, R.: Performance and Reliability Modelling of Computing Systems Using Spectral Expansion, Ph.D. Thesis, Department of Computing Science, University of Newcastle, University of Newcastle Upon Tyne (1995)

  5. Chaudhry, M.L.: QROOT Software Package. A&A Publications, Kingston (1991)

    Google Scholar 

  6. Chaudhry, M.L., Harris, C.M., Marchal, W.G.: Robustness of root finding in single-server queueing models. INFORMS J. Comput. 2, 273–286 (1990)

    Article  Google Scholar 

  7. Chaudhry, M.L., Templeton, J.G.C.: A First Course in Bulk Queues. Wiley, New York (1983)

    Google Scholar 

  8. Cromie, M.V., Chaudhry, M.L., Grassmann, W.K.: Further results for the queueing system \(M^{X}/M/c\). J. Oper. Res. Soc. 20(8), 755–763 (1979)

    Google Scholar 

  9. Daigle, J.N., Lucantoni, D.M.: Queueing systems having phase-dependent arrival and service rates. In: Stewart, W.J. (ed.) Numerical Solutions of Markov Chains. Marcel Dekker Inc, New York (1991)

    Google Scholar 

  10. Ferreira, F., Pacheco, A.: Analysis of \(GI^{X}/M/s/c\) systems via uniformisation and stochastic ordering. In Czachórski T., Pekergin, N. (eds), Proceedings of First Workshop on New Trends in Modelling. Quantitative Methods and Measurement, Zakopane, Poland, 27/06/2004-29/06/2004, pp. 97–133 (2004)

  11. Gontijo, G.M., Atuncar, G.S., Cruz, F.R.B., Kerbache, L.: Performance Evaluation and Dimensioning of \(GI^{X}/M/c/N\) Systems through Kernel Estimation. Mathematical Problems in Engineering (2011). doi:10.1155/2011/348262

  12. Gouweleeuw, F.N.: A general approach to computing loss probabilities in finite-buffer queues, Ph.D. thesis, Vrije Universiteit, Amsterdam (1996)

  13. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory, vol. 4. Wiley, New York (2008)

    Book  Google Scholar 

  14. Holman, D.F., Chaudhry, M.L.: Some results for the queueing system \(E_k^X /M/c\). Naval Res. Logist. Q. 2, 217–222 (1980)

    Article  Google Scholar 

  15. Janssen, A.J.E.M., van Leeuwaarden, J.S.H.: Analytic computation schemes for the discrete-time bulk service queue. Queueing Syst. 50, 141–163 (2005)

    Article  Google Scholar 

  16. Kabak, I.W.: Blocking and delays in \(M^{X}/M/c\) bulk arrival queueing system. Mgmt Sci. 17, 112–115 (1970)

    Article  Google Scholar 

  17. Kim, B., Choi, B.D.: Asymptotic analysis and simple approximation of the loss probability of the \(GI^{X}/M/c/K\) queue. Perform. Eval. 54(4), 331–356 (2003)

    Article  Google Scholar 

  18. Laxmi, P.V., Gupta, U.C.: Analysis of finite-buffer multi-server queues with group arrivals: \(GI^{X}/M/c/N\). Queueing Syst.: Theory Appl. 36, 125–140 (2000)

    Article  Google Scholar 

  19. Maity, A., Gupta, U.C.: A comparative numerical study of the spectral theory approach of Nishimura and the roots method based on the analysis of BDMMAP/G/1 queue. Int. J. Stoch. Anal. 958780, 9 (2015)

    Google Scholar 

  20. Neuts, M.F.: An algorithmic solution to the GI/M/c queue with group arrivals. Cahiers de C.E.R.O. 21, 109–119 (1979)

    Google Scholar 

  21. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)

    Article  Google Scholar 

  22. Yao, D.W., Chaudhry, M.L., Templeton, J.G.C.: A note on some relations in the queue \(GI^{X}/M/c\). Oper. Res. Lett. 3, 53–56 (1984)

    Article  Google Scholar 

  23. Zhao, Y.Q.: Analysis of the \(GI^{X}/M/c\) model. Queueing Syst. 15, 347–364 (1994)

    Article  Google Scholar 

  24. Zhao, Y.Q.: Counter examples to a conjecture on bounds for the loss probability in finite-buffer queues. Probab. Eng. Inf. Sci. 13, 221–227 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported (in part) by the Department of National Defence Applied Research Program Grant GRC0000B1638. We would like to sincerely thank the referees for their constructive comments and insights which lead to a much more polished paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Kim.

Appendices

Appendix A

Linear difference equations have frequently been used in the theory of queues (see Chaudhry and Templeton [7]). Their application in solving \(GI^{X}/M/c\) is explained below. First, by rearranging (1), we have

$$\begin{aligned} p_j^- =\mathop \sum \limits _{h=1}^r b_h \mathop \sum \limits _{i=j-h}^\infty p_i^- k_{i+h-j} ,\qquad j\ge 1. \end{aligned}$$

Now, substituting \(p_j^- =Cz^{j}, j\ge \max \left( {c,r} \right) \) into the above expression leads to

$$\begin{aligned} 1=B\left( {z^{-1}} \right) K\left( z \right) , \end{aligned}$$

which is the underlying characteristic equation of \(GI^{X}/M/c\). To prove that (2) has r roots inside the unit circle \(\left| z \right| =1\), let us rewrite this equation as

$$\begin{aligned} z^{r}-\left( {\mathop \sum \limits _{h=1}^r b_h z^{r-h}} \right) K\left( z \right) =0. \end{aligned}$$

Now let

$$\begin{aligned} f\left( z \right) =z^{r} \end{aligned}$$

and

$$\begin{aligned} g\left( z \right) =-\left( {\mathop \sum \limits _{h=1}^r b_h z^{r-h}} \right) K\left( z \right) . \end{aligned}$$

Consider absolute values of \(f\left( z \right) \) and \(g\left( z \right) \) on the circle \(\left| z \right| =1-\delta \), where \(\delta \) is positive and sufficiently small. This gives

$$\begin{aligned} \left| {f\left( z \right) } \right| =\left( {1-\delta } \right) ^{r}=1-\delta r+o\left( \delta \right) \end{aligned}$$

and

$$\begin{aligned} \left| {g\left( z \right) } \right| \le \mathop \sum \limits _{h=1}^r b_h \left| z \right| ^{r-h}K\left( {\left| z \right| } \right) , \end{aligned}$$

which leads to

$$\begin{aligned} \mathop \sum \limits _{h=1}^r b_h \left| z \right| ^{r-h}K\left( {\left| z \right| } \right) =1-\delta \left( {r-\mu _X } \right) -\frac{c\mu }{\lambda }\delta +o\left( \delta \right) \end{aligned}$$

or

$$\begin{aligned} \mathop \sum \limits _{h=1}^r b_h \left| z \right| ^{r-h}K\left( {\left| z \right| } \right) =1-\delta r-\frac{c\mu }{\lambda }\left( {1-\rho } \right) \delta +o\left( \delta \right) , \end{aligned}$$

where \(\rho =\frac{\lambda \mu _X }{c\mu }\). Thus, for \(\rho <1\) and \(\delta \) sufficiently small, \(\left| {f\left( z \right) } \right| >\left| {g\left( z \right) } \right| \) on \(\left| z \right| =1-\delta \). Since \(f\left( z \right) \) and \(g\left( z \right) \) satisfy the conditions of Rouché’s theorem, it follows that (2) has r roots inside the unit circle.

Appendix B

If the two t.p.m.’s of \(GI^{X}/M/c\) are \(\left[ {P_{i,j} } \right] _{c\le r}\) when \(c\le r\) and \(\left[ {P_{i,j} } \right] _{c>r}\) when \(c>r\), respectively, then

$$\begin{aligned}&[P_{i,j} ]_{c\le r}\\&\quad =\left[ {\begin{array}{ccccccccccc} 1-\sum \limits _{j=1}^\infty {P_{0,j}} &{}\quad P_{0,1} &{}\quad \cdots &{}\quad P_{0,c} &{}\quad \cdots &{}\quad P_{0,r-1} &{}\quad P_{0,r} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{1,j}} &{}\quad P_{1,1} &{}\quad \cdots &{}\quad P_{1,c} &{}\quad \cdots &{}\quad P_{1,r-1} &{}\quad P_{1,r} &{}\quad P_{1,r+1} &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{2,j}} &{}\quad P_{2,1} &{}\quad \cdots &{}\quad P_{2,c} &{}\quad \cdots &{}\quad P_{2,r-1} &{}\quad P_{2,r} &{}\quad P_{2,r+1} &{}\quad P_{2,r+2} &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{3,j}} &{}\quad P_{3,1} &{}\quad \cdots &{}\quad P_{3,c} &{}\quad \cdots &{}\quad P_{3,r-1} &{}\quad P_{3,r} &{}\quad P_{3,r+1} &{}\quad P_{3,r+2} &{}\quad P_{3,r+3} &{}\quad \cdots \\ \vdots &{}\quad \vdots &{}\quad &{} \vdots &{}\quad &{}\vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\\ \end{array}} \right] \end{aligned}$$

and

$$\begin{aligned}&\left[ P_{i,j}\right] _{c>r}\\&\quad =\left[ {\begin{array}{ccccccc} 1-\sum \limits _{j=1}^\infty {P_{0,j}} &{}\quad \cdots &{}\quad P_{0,c-1} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{1,j}} &{}\quad \cdots &{}\quad P_{1,c-1} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ \vdots &{}\quad &{} \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{} \\ 1-\sum \limits _{j=1}^\infty {P_{c-r-1,j}} &{}\quad \cdots &{}\quad P_{c-r-1,c-1} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{c-r,j}} &{}\quad \cdots &{}\quad P_{c-r,c-1} &{}\quad P_{c-r,c} &{}\quad 0 &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{c-r+1,j}} &{}\quad \cdots &{}\quad P_{c-r+1,c-1} &{}\quad P_{c-r+1,c} &{}\quad P_{c-r+1,c+1} &{}\quad 0 &{}\quad \cdots \\ 1-\sum \limits _{j=1}^\infty {P_{c-r+2,j}} &{}\quad \cdots &{}\quad P_{c-r+2,c-1} &{}\quad P_{c-r+2,c} &{}\quad P_{c-r+2,c+1} &{}\quad P_{c-r+2,c+2} &{}\quad \cdots \\ \vdots &{}\quad &{} \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{} \\ \end{array}} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, M.L., Kim, J.J. Analytically elegant and computationally efficient results in terms of roots for the \(GI^{X}/M/c\) queueing system. Queueing Syst 82, 237–257 (2016). https://doi.org/10.1007/s11134-015-9469-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-015-9469-3

Keywords

Mathematics Subject Classification

Navigation