Skip to main content
Log in

Two-day appointment scheduling with patient preferences and geometric arrivals

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider an appointment system where the patients have preferences about the appointment days. A patient may be scheduled on one of the days that is acceptable to her, or be denied appointment. The patient may or may not show up at the appointed time. The net cost is a convex function of the actual number of patients served on a given day. We study the optimal scheduling policy that minimizes the long-run average cost and study its structural properties. We advocate an index policy, which is easy to implement, performs well in comparison with other heuristic policies, and is close to the optimal policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balasubramanian, H., Biehl, S., Dai, L., Muriel, A.: Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments. Health Care Manag. Sci. 17(1), 31–48 (2014)

    Article  Google Scholar 

  2. Blok, H., Spieksma, E.M.: Structures of optimal policies in Markov Decision Processes with unbounded jumps: the state of our art. In: Boucherie, R.J., van Dijk, N.M. (eds.) Markov Decision Processes in Practice, pp. 139–196. Springer, Berlin (2016)

    Google Scholar 

  3. Çayirli, T., Veral, E.: Outpatient scheduling in health care: a review of literature. Prod. Oper. Manag. 12(4), 519–549 (2003)

    Article  Google Scholar 

  4. Dekker, R., Hordijk, A.: Recurrence conditions for average and Blackwell optimality in denumerable state Markov decision chains. Math. Oper. Res. 17(2), 271–289 (1992)

    Article  Google Scholar 

  5. Dekker, R., Hordijk, A., Spieksma, F.M.: On the relation between recurrence and ergodicity properties in denumerable Markov decision chains. Math. Oper. Res. 19(3), 539–559 (1994)

    Article  Google Scholar 

  6. eClinicalWorks: About us. Retrieved from http://www.eclinicalworks.com/about-us/. Accessed 13 Jan 2015

  7. Feldman, J., Liu, N., Topaloglu, H., Ziya, S.: Appointment scheduling under patient preference and no-show behavior. Oper. Res. 62(4), 794–811 (2014)

    Article  Google Scholar 

  8. Green, L.V., Savin, S.: Reducing delays for medical appointments: a queueing approach. Oper. Res. 56(6), 1526–1538 (2008)

    Article  Google Scholar 

  9. Gupta, D., Denton, B.: Appointment scheduling in health care: challenges and opportunities. IIE Trans. 40(9), 800–819 (2008)

    Article  Google Scholar 

  10. Gupta, D., Wang, L.: Revenue management for a primary-care clinic in the presence of patient choice. Oper. Res. 56(3), 576–592 (2008)

    Article  Google Scholar 

  11. Ha, A.Y.: Optimal dynamic scheduling policy for a make-to-stock production system. Oper. Res. 45(1), 42–53 (1997)

    Article  Google Scholar 

  12. Hassin, R., Mendel, S.: Scheduling arrivals to queues: a single-server model with no-shows. Manag. Sci. 54(3), 565–572 (2008)

    Article  Google Scholar 

  13. Kaandorp, G.C., Koole, G.: Optimal outpatient appointment scheduling. Health Care Manag. Sci. 10(3), 217–229 (2007)

    Article  Google Scholar 

  14. Koole, G.: Structural results for the control of queueing systems using event-based dynamic programming. Queueing Syst. 30(3), 323–339 (1998)

    Article  Google Scholar 

  15. Koole, G.: Monotonicity in Markov reward and decision chains: theory and applications. Found. Trends Stoch. Syst. 1, 1–76 (2006)

    Article  Google Scholar 

  16. Kuiper, A., Kemper, B., Mandjes, M.: A computational approach to optimized appointment scheduling. Queueing Syst. 79(1), 5–36 (2015)

    Article  Google Scholar 

  17. LaGanga, L.R., Lawrence, S.R.: Appointment overbooking in health care clinics to improve patient service and clinic performance. Prod. Oper. Manag. 21(5), 874–888 (2012)

    Article  Google Scholar 

  18. Liu, N., Ziya, S., Kulkarni, V.G.: Dynamic scheduling of outpatient appointments under patient no-shows and cancellations. Manuf. Serv. Oper. Manag. 12(2), 347–364 (2010)

    Google Scholar 

  19. Spieksma, F.M.: Geometrically ergodic Markov Chains and the optimal control of queues. PhD thesis, Leiden University (1990) (Available on request from the author)

  20. Talluri, K., van Ryzin, G.: Revenue management under a general discrete choice model of consumer behavior. Manag. Sci. 50(1), 15–33 (2004)

    Article  Google Scholar 

  21. Tijms, H.C.: A First Course in Stochastic Models. Wiley, Chichester (2003)

    Book  Google Scholar 

  22. U.S. Department of Health & Human Services: HITECH Act Enforcement Interim Final Rule. Retrieved from http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html. Accessed 13 Jan 2015

  23. Wang, W.Y., Gupta, D.: Adaptive appointment systems with patient preferences. Manuf. Serv. Oper. Manag. 13(3), 373–389 (2011)

    Google Scholar 

  24. Zacharias, C., Pinedo, M.: Appointment scheduling with noshows and overbooking. Prod. Oper. Manag. 23(5), 788–801 (2014)

    Article  Google Scholar 

  25. ZocDoc: About us. Retrieved from http://www.zocdoc.com/aboutus. Accessed 13 Jan 2015

  26. Zonderland, M.E., Boucherie, R.J., Hanbali, A.A.: Appointments in care pathways: the \(\text{ Geo }^\text{ x }\)/D/1 queue with slot reservations. Queueing Syst. 79(1), 37–51 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Onno Boxma for his valuable comments on the initial draft. We also want to thank the referees for their careful reading of the paper and extremely useful suggestions that, we believe, have made the paper more readable and more rigorous.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Appendix

Appendix

1.1 Proof of Lemma 3

(a) The result follows since monotonicity is closed under the minimum operator.

(b) We need to show \(T_{12}f(i+1,j)\le T_{12}f(i,j)\) for \(0\le i\le m-1, j\ge 0\). We consider three cases:

Case (b)(1) \(0\le i\le m-2, j\ge 0\). The result follows since monotonicity is closed under the minimum operator.

Case (b)(2) \(i=m-1,0\le j\le m-1\). We need to show \(T_{12}f(m,j)\le T_{12}f(m-1,j)\). We have

$$\begin{aligned} \textit{Dec}(2) \text { in } S_0\cup S_2&\Rightarrow f(m,j+1)\le f(m,j);\\ \textit{Inc}(1) \text { in } S_2\cup S_3&\Rightarrow f(m,j)\le f(m+1,j). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(m,j)=\min \{f(m+1,j),f(m,j+1),f(m,j)\}=f(m,j+1). \end{aligned}$$

Similarly, we have

$$\begin{aligned} \textit{Dec}(1) \text { in } S_0\cup S_1&\Rightarrow f(m,j)\le f(m-1,j);\\ \textit{Dec}(2) \text { in } S_0\cup S_2&\Rightarrow f(m-1,j+1)\le f(m-1,j). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(m-1,j)&=\min \{f(m,j),f(m-1,j+1),f(m-1,j)\}\\&=\min \{f(m,j),f(m-1,j+1)\}. \end{aligned}$$

We know \(f(m,j+1)\le f(m,j)\) by \(\textit{Dec}(2) \text { in } S_0\cup S_2\) and \(f(m,j+1)\le f(m-1,j+1)\) by \(\textit{Dec}(1) \text { in } S_0\cup S_1\). Therefore,

$$\begin{aligned} T_{12}f(m,j)=f(m,j+1)\le \min \{f(m,j),f(m-1,j+1)\}=T_{12}f(m-1,j). \end{aligned}$$

Case (b)(3) \(i=m-1,j\ge m\). We need to show \(T_{12}f(m,j)\le T_{12}f(m-1,j)\). We have

$$\begin{aligned} \textit{Inc}(1) \text { in } S_2\cup S_3&\Rightarrow f(m,j)\le f(m+1,j);\\ \textit{Inc}(2) \text { in } S_1\cup S_3&\Rightarrow f(m,j)\le f(m,j+1). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(m,j)=\min \{f(m+1,j),f(m,j+1),f(m,j)\}=f(m,j). \end{aligned}$$

We have

$$\begin{aligned} \textit{Dec}(1) \text { in } S_0\cup S_1&\Rightarrow f(m,j)\le f(m-1,j);\\ \textit{Inc}(2) \text { in } S_1\cup S_3&\Rightarrow f(m-1,j)\le f(m-1,j+1). \end{aligned}$$

Therefore,

$$\begin{aligned} T_{12}f(m-1,j)=\min \{f(m,j),f(m-1,j+1),f(m-1,j)\}=f(m,j). \end{aligned}$$

The result follows.

(c) The result follows since monotonicity is closed under the minimum operator.

(d) We need to show \(T_{12}f(i,j+1)\le T_{12}f(i,j)\) for \(i\ge 0,0\le j\le m-1\). We consider three cases:

Case (d)(1) \(i\ge 0, 0\le j\le m-2\). The result follows since monotonicity is closed under the minimum operator.

Case (d)(2) \(0\le i\le m-1,j=m-1\). We need to show \(T_{12}f(i,m)\le T_{12}f(i,m-1)\). We have

$$\begin{aligned} \textit{Dec}(1) \text { in } S_0\cup S_1&\Rightarrow f(i+1,m)\le f(i,m);\\ \textit{Inc}(2) \text { in } S_1\cup S_3&\Rightarrow f(i,m)\le f(i,m+1). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(i,m)=\min \{f(i+1,m),f(i,m+1),f(i,m)\}=f(i+1,m). \end{aligned}$$

Similarly, we have

$$\begin{aligned} \textit{Dec}(1) \text { in } S_0\cup S_1&\Rightarrow f(i+1,m-1)\le f(i,m-1);\\ \textit{Dec}(2) \text { in } S_0\cup S_2&\Rightarrow f(i,m)\le f(i,m-1). \end{aligned}$$

Therefore,

$$\begin{aligned} T_{12}f(i,m-1)&=\min \{f(i+1,m-1),f(i,m),f(i,m-1)\}\\&=\min \{f(i+1,m-1),f(i,m)\}. \end{aligned}$$

We know \(f(i+1,m)\le f(i+1,m-1)\) by \(\textit{Dec}(2) \text { in } S_0\cup S_2\) and \(f(i+1,m)\le f(i,m)\) by \(\textit{Dec}(1) \text { in } S_0\cup S_1\).

$$\begin{aligned} T_{12}f(i,m)=f(i+1,m)\le \min \{f(i+1,m-1),f(i,m)\}=T_{12}f(i,m-1). \end{aligned}$$

Case (d)(3) \(i\ge m,j=m-1\). We need to show \(T_{12}f(i,m)\le T_{12}f(i,m-1)\). We have

$$\begin{aligned} \textit{Inc}(1) \text { in } S_2\cup S_3&\Rightarrow f(i,m)\le f(i+1,m);\\ \textit{Inc}(2) \text { in } S_1\cup S_3&\Rightarrow f(i,m)\le f(i,m+1). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(i,m)=\min \{f(i+1,m),f(i,m+1),f(i,m)\}=f(i,m). \end{aligned}$$

Similarly, we have

$$\begin{aligned} \textit{Dec}(2) \text { in } S_0\cup S_2&\Rightarrow f(i,m)\le f(i,m-1);\\ \textit{Inc}(1) \text { in } S_2\cup S_3&\Rightarrow f(i,m-1)\le f(i+1,m-1). \end{aligned}$$

Therefore,

$$\begin{aligned} T_{12}f(i,m-1)=\min \{f(i+1,m-1),f(i,m),f(i,m-1)\}=f(i,m). \end{aligned}$$

The result follows.

(e) We show that \(T_{12}f(i,j)+T_{12}f(i+2,j)\ge 2T_{12}f(i+1,j)\) for \(0\le i\le m-2, 0\le j\le m-1\) and skip the proof that \(T_{12}f(i,j)+T_{12}f(i,j+2)\ge 2T_{12}f(i,j+1)\) for \(0\le i\le m-1, 0\le j\le m-2\) since it is similar. We consider four cases:

Case (e)(1) \(i\le m-3,j\le m-1\). We know

$$\begin{aligned} T_{12}f(i,j)&=\min \{f(i+1,j),f(i,j+1),f(i,j)\}\\&=\min \{f(i+1,j),f(i,j+1)\}. \end{aligned}$$

The \(T_{12}\) here coincides with the \(T_{R(I)}\) in Koole [14]. The result follows.

Case (e)(2) \(i\le m-3,j=m\). We show

$$\begin{aligned} T_{12}f(i,m)+T_{12}f(i+2,m)\ge 2T_{12}f(i+1,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(i,m)&=f(i+1,m);\\ T_{12}f(i+2,m)&=f(i+3,m);\\ T_{12}f(i+1,m)&=f(i+2,m). \end{aligned}$$

The result follows from the \(\textit{Convexity}\) of f.

Case (e)(3) \(i=m-2,j\le m-1\). We show

$$\begin{aligned} T_{12}f(m-2,j)+T_{12}f(m,j)\ge 2T_{12}f(m-1,j), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m-2,j)&=\min \{f(m-1,j),f(m-2,j+1)\};\\ T_{12}f(m-1,j)&=\min \{f(m,j),f(m-1,j+1)\};\\ T_{12}f(m,j)&=f(m,j+1). \end{aligned}$$

We consider two cases:

Case (e)(3)(i) \(f(m-1,j)\ge f(m-2,j+1)\). Then \(T_{12}f(m-2,j)=f(m-2,j+1)\). By the property \(\textit{SuperC}\) of f, we know

$$\begin{aligned} f(m,j)-f(m-1,j+1)\ge f(m-1,j)-f(m-2,j+1)\ge 0. \end{aligned}$$

Hence \(T_{12}f(m-1,j)=f(m-1,j+1)\). By the \(\textit{Convexity}\) of f, we have

$$\begin{aligned} T_{12}f(m-2,j)+T_{12}f(m,j)&=f(m-2,j+1)+f(m,j+1)\\&\ge 2f(m-1,j+1)=2T_{12}f(m-1,j). \end{aligned}$$

Case (e)(3)(ii) \(f(m-1,j)< f(m-2,j+1)\). Then \(T_{12}f(m-2,j)=f(m-1,j)\). By the \(\textit{Super}\) of f, we have

$$\begin{aligned} T_{12}f(m-2,j)+T_{12}f(m,j)&=f(m-1,j)+f(m,j+1)\\&\ge f(m,j)+f(m-1,j+1)\\&\ge 2\min \{f(m,j),f(m-1,j+1)\}\\&=2T_{12}f(m-1,j). \end{aligned}$$

Case (e)(4) \(i=m-2,j=m\). We show

$$\begin{aligned} T_{12}f(m-2,m)+T_{12}f(m,m)\ge 2T_{12}f(m-1,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m-2,m)&=f(m-1,m);\\ T_{12}f(m-1,m)&=f(m,m);\\ T_{12}f(m,m)&=f(m,m). \end{aligned}$$

The result follows from \(f(m-1,m)\ge f(m,m)\) by \(\textit{Dec}(1) \text { in } S_0\cup S_1\).

(f) We show that \(T_{12}f(i,j)+T_{12}f(i+1,j+1)\ge T_{12}f(i+1,j)+T_{12}f(i,j+1)\) for \(0\le i,j\le m-1\). We consider four cases:

Case (f)(1) \(i\le m-2,j\le m-2\). We know \(T_{12}f(i,j)=\min \{f(i+1,j),f(i,j+1)\}\) coincides with \(T_{R(I)}\) in Koole [14]. The result follows.

Case (f)(2) \(i=m-1,j\le m-2\). We show

$$\begin{aligned} T_{12}f(m-1,j)+T_{12}f(m,j+1)\ge T_{12}f(m,j)+T_{12}f(m-1,j+1), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m-1,j)&=\min \{f(m,j),f(m-1,j+1)\};\\ T_{12}f(m,j+1)&=f(m,j+2);\\ T_{12}f(m,j)&=f(m,j+1);\\ T_{12}f(m-1,j+1)&=\min \{f(m,j+1),f(m-1,j+2)\}. \end{aligned}$$

We consider two cases:

Case (f)(2)(i) \(f(m,j)\ge f(m-1,j+1)\). Then \(T_{12}f(m-1,j)=f(m-1,j+1)\). By the \(\textit{Super}\) of f, we know

$$\begin{aligned} T_{12}f(m-1,j)+T_{12}f(m,j+1)&=f(m-1,j+1)+f(m,j+2)\\&\ge f(m,j+1)+f(m-1,j+2) \text { (by } \textit{Super})\\&\ge f(m,j+1)+\min \{f(m,j+1),\\&\quad \ f(m-1,j+2)\}\\&=T_{12}f(m,j)+T_{12}f(m-1,j+1). \end{aligned}$$

Case (f)(2)(ii) \(f(m,j)< f(m-1,j+1)\). Then \(T_{12}f(m-1,j)=f(m,j)\). By the \(\textit{SuperC}\) of f, we know

$$\begin{aligned} f(m,j+1)-f(m-1,j+2)\le f(m,j)-f(m-1,j+1)<0. \end{aligned}$$

Hence \(T_{12}f(m-1,j+1)=f(m,j+1)\). By the \(\textit{Convexity}\) of f, we have

$$\begin{aligned}&T_{12}f(m-1,j)+T_{12}f(m,j+1)\\&\quad =f(m,j)+f(m,j+2)\ge f(m,j+1)+f(m,j+1)\\&\quad = T_{12}f(m,j)+T_{12}f(m-1,j+1). \end{aligned}$$

Case (f)(3) \(i\le m-2,j=m-1\). We show

$$\begin{aligned} T_{12}f(i,m-1)+T_{12}f(i+1,m)\ge T_{12}f(i+1,m-1)+T_{12}f(i,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(i,m-1)&=\min \{f(i+1,m-1),f(i,m)\};\\ T_{12}f(i+1,m)&=f(i+2,m);\\ T_{12}f(i+1,m-1)&=\min \{f(i+2,m-1),f(i+1,m)\};\\ T_{12}f(i,m)&=f(i+1,m). \end{aligned}$$

We know

$$\begin{aligned}&T_{12}f(i,m-1)+T_{12}f(i+1,m)\\&\quad =\min \{f(i+1,m-1),f(i,m)\}+f(i+2,m)\\&\quad =\min \{f(i+1,m-1)+f(i+2,m),f(i,m)+f(i+2,m)\}\\&\quad \ge \min \{f(i+1,m-1)+f(i+2,m),2f(i+1,m)\} \text { (by } \textit{Convexity})\\&\quad \ge \min \{f(i+2,m-1)+f(i+1,m),2f(i+1,m)\} \text { (by } \textit{Super})\\&\quad = \min \{f(i+2,m-1),f(i+1,m)\}+f(i+1,m)\\&\quad =T_{12}f(i+1,m-1)+T_{12}f(i,m). \end{aligned}$$

Case (f)(4) \(i=m-1,j=m-1\). We show

$$\begin{aligned} T_{12}f(m-1,m-1)+T_{12}f(m,m)\ge T_{12}f(m,m-1)+T_{12}f(m-1,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m-1,m-1)&=\min \{f(m,m-1),f(m-1,m)\};\\ T_{12}f(m,m)&=f(m,m);\\ T_{12}f(m,m-1)&=f(m,m);\\ T_{12}f(m-1,m)&=f(m,m). \end{aligned}$$

We know

$$\begin{aligned} T_{12}f(m-1,m-1)+T_{12}f(m,m)&=\min \{f(m,m-1),f(m-1,m)\}+f(m,m)\\&\ge f(m,m)+f(m,m) \text { (by } \textit{Dec}(1) \text { and } \textit{Dec}(2) )\\&=T_{12}f(m,m-1)+T_{12}f(m-1,m). \end{aligned}$$

(g) We show that \(T_{12}f(i+2,j)+T_{12}f(i,j+1)\ge T_{12}f(i+1,j)+T_{12}f(i+1,j+1)\) for \(0\le i\le m-2, 0\le j\le m-1\). We skip the proof of \(T_{12}f(i+1,j)+T_{12}f(i,j+2)\ge T_{12}f(i,j+1)+T_{12}f(i+1,j+1)\) for \(0\le i\le m-1, 0\le j\le m-2\). We consider four cases:

Case (g)(1) \(i\le m-3,j\le m-2\). We know \(T_{12}f(i,j)=\min \{f(i+1,j),f(i,j+1)\}\) coincides with \(T_{R(I)}\) in Koole [14]. The result follows.

Case (g)(2) \(i=m-2,j\le m-2\). We show

$$\begin{aligned} T_{12}f(m,j)+T_{12}f(m-2,j+1)\ge T_{12}f(m-1,j)+T_{12}f(m-1,j+1), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m,j)&=f(m,j+1);\\ T_{12}f(m-2,j+1)&=\min \{f(m-1,j+1),f(m-2,j+2)\};\\ T_{12}f(m-1,j)&=\min \{f(m,j),f(m-1,j+1)\};\\ T_{12}f(m-1,j+1)&=\min \{f(m,j+1),f(m-1,j+2)\}. \end{aligned}$$

We consider two cases:

Case (g)(2)(i) \(f(m-1,j+1)<f(m-2,j+2)\). Then \(T_{12}f(m-2,j+1)=f(m-1,j+1)\). We have

$$\begin{aligned}&T_{12}f(m,j)+T_{12}f(m-2,j+1)\\&\quad =f(m,j+1)+f(m-1,j+1)\\&\quad \ge \min \{f(m,j+1),f(m-1,j+2)\}+ \min \{f(m,j),f(m-1,j+1)\}\\&\quad =T_{12}f(m-1,j+1)+T_{12}f(m-1,j). \end{aligned}$$

Case (g)(2)(ii) \(f(m-1,j+1)\ge f(m-2,j+2)\). Then \(T_{12}f(m-2,j+1)=f(m-2,j+2)\). We have

$$\begin{aligned}&\textit{SuperC} \Rightarrow f(m,j+1)-f(m-1,j+2)\ge f(m-1,j+1)\\&\quad -f(m-2,j+2)\ge 0\Rightarrow T_{12}f(m-1,j+1)=f(m-1,j+2)\\&\quad \textit{SuperC} \Rightarrow f(m,j)-f(m-1,j+1)\ge f(m,j+1)\\&\quad -f(m-1,j+2)\ge 0\Rightarrow T_{12}f(m-1,j)=f(m-1,j+1). \end{aligned}$$

We have

$$\begin{aligned}&T_{12}f(m,j)+T_{12}f(m-2,j+1)\\&\quad =f(m,j+1)+f(m-2,j+2)\\&\quad \ge f(m-1,j+2)+ f(m-1,j+1) \text { (by } \textit{SuperC} )\\&\quad =T_{12}f(m-1,j+1)+T_{12}f(m-1,j). \end{aligned}$$

Case (g)(3) \(i\le m-3,j=m-1\). We show

$$\begin{aligned} T_{12}f(i+2,m-1)+T_{12}f(i,m)\ge T_{12}f(i+1,m-1)+T_{12}f(i+1,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(i+2,m-1)&=\min \{f(i+3,m-1),f(i+2,m)\};\\ T_{12}f(i,m)&=f(i+1,m);\\ T_{12}f(i+1,m-1)&=\min \{f(i+2,m-1),f(i+1,m)\};\\ T_{12}f(i+1,m)&=f(i+2,m). \end{aligned}$$

We consider two cases:

Case (g)(3)(i) \(f(i+3,m-1)<f(i+2,m)\). Then \(T_{12}f(i+2,m-1)=f(i+3,m-1)\). We have

$$\begin{aligned}&\textit{SuperC} \Rightarrow f(i+2,m-1)-f(i+1,m)\le f(i+3,m-1)-f(i+2,m)<0\\&\qquad \quad \ \ \Rightarrow T_{12}f(i+1,m-1)=f(i+2,m-1). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(i+2,m-1)+T_{12}f(i,m)&=f(i+3,m-1)+f(i+1,m)\\&\ge f(i+2,m-1)+ f(i+2,m) \text { (by } \textit{SuperC} )\\&=T_{12}f(i+1,m-1)+T_{12}f(i+1,m). \end{aligned}$$

Case (g)(3)(ii) \(f(i+3,m-1)\ge f(i+2,m)\). Then \(T_{12}f(i+2,m-1)=f(i+2,m)\). We have

$$\begin{aligned} T_{12}f(i+2,m-1)+T_{12}f(i,m)&=f(i+2,m)+f(i+1,m)\\&\ge f(i+2,m)+ \min \{f(i+2,m-1),\\&\quad f(i+1,m)\}\\&=T_{12}f(i+1,m)+T_{12}f(i+1,m-1). \end{aligned}$$

Case (g)(4) \(i=m-2,j=m-1\). We show

$$\begin{aligned} T_{12}f(m,m-1)+T_{12}f(m-2,m)\ge T_{12}f(m-1,m-1)+T_{12}f(m-1,m), \end{aligned}$$

where we know

$$\begin{aligned} T_{12}f(m,m-1)&=f(m,m);\\ T_{12}f(m-2,m)&=f(m-1,m);\\ T_{12}f(m-1,m-1)&=\min \{f(m,m-1),f(m-1,m)\};\\ T_{12}f(m-1,m)&=f(m,m). \end{aligned}$$

Hence

$$\begin{aligned} T_{12}f(m,m-1)+T_{12}f(m-2,m)&=f(m,m)+f(m-1,m)\\&\ge f(m,m)+ \min \{f(m,m-1),f(m-1,m)\}\\&=T_{12}f(m-1,m)+T_{12}f(m-1,m-1). \end{aligned}$$

1.2 Proof of Lemma 4

Due to the symmetry, we show the proof for operator \(T_1\) and skip the proof for operator \(T_2\). Given the properties f has, we know

$$\begin{aligned} T_1f(i,j)=\min \{f(i+1,j),f(i,j)\}= {\left\{ \begin{array}{ll} f(i+1,j), &{}\quad \forall (i,j)\in S_0\cup S_1;\\ f(i,j), &{}\quad \forall (i,j)\in S_2\cup S_3. \end{array}\right. } \end{aligned}$$

We prove (f) and skip the rest due to the similarity. We show that \(T_1f(i,j)+T_1f(i+1,j+1)\ge T_1f(i+1,j)+T_1f(i,j+1)\) for any \(0\le i,j\le m-1\). We consider four cases:

Case (f)(1) \(0\le i\le m-2,0\le j\le m-2\). We have

$$\begin{aligned} T_1f(i,j)+T_1f(i+1,j+1)&=f(i+1,j)+f(i+2,j+1)\\&\ge f(i+2,j)+f(i+1,j+1)\text { (by } \textit{Super} )\\&=T_1f(i+1,j)+T_1f(i,j+1). \end{aligned}$$

Case (f)(2) \(i=m-1,0\le j\le m-2\). We need to show \(T_1f(m-1,j)+T_1f(m,j+1)\ge T_1f(m,j)+T_1f(m-1,j+1)\). We have

$$\begin{aligned} T_1f(m-1,j)+T_1f(m,j+1)&=f(m,j)+f(m,j+1)\\&=T_1f(m,j)+T_1f(m-1,j+1) \end{aligned}$$

Case (f)(3) \(0\le i\le m-2,j=m-1\). We need to show \(T_1f(i,m-1)+T_1f(i+1,m)\ge T_1f(i+1,m-1)+T_1f(i,m)\). We have

$$\begin{aligned} T_1f(i,m-1)+T_1f(i+1,m)&=f(i+1,m-1)+f(i+2,m)\\&\ge f(i+2,m-1)+f(i+1,m)\text { (by } \textit{Super})\\&=T_1f(i+1,m-1)+T_1f(i,m). \end{aligned}$$

Case (f)(4) \(i=m-1,j=m-1\). We need to show \(T_1f(m-1,m-1)+T_1f(m,m)\ge T_1f(m,m-1)+T_1f(m-1,m)\). This follows because

$$\begin{aligned} T_1f(m-1,m-1)+T_1f(m,m)&=f(m,m-1)+f(m,m)\\&=T_1f(m,m-1)+T_1f(m-1,m). \end{aligned}$$

1.3 Proof of Lemma 6

We know \(T_cf(i,j)=c(i)+f(j,0)\) and c(x) is a convex function which achieves its minimum at \(x=m\), hence (a) and (b) follow. For (c), if f is \(\textit{Inc}(1) \text { in } S_2\cup S_3\), then \(f(i+1,j)\ge f(i,j), \forall i\ge m, j\ge 0\). For any \(j\ge m\), we have \(T_cf(i,j+1)=c(i)+f(j+1,0)\ge c(i)+f(j,0)=T_cf(i,j)\). Hence \(T_cf\) is \(\textit{Inc}(2) \text { in } S_1\cup S_3\). For (d), if f is \(\textit{Dec}(1) \text { in } S_0\cup S_1\), then \(f(i+1,j)\le f(i,j), \forall i\le m-1, j\ge 0\). For any \(j\le m-1\), we have \(T_cf(i,j+1)=c(i)+f(j+1,0)\le c(i)+f(j,0)=T_cf(i,j)\). Hence \(T_cf\) is \(\textit{Dec}(2) \text { in } S_0\cup S_2\). For (e), the Convexity of \(T_cf\) follows directly from the Convexity of f. (f) is trivially shown given the definition of the operator \(T_c\). For (g), we have

$$\begin{aligned} T_cf(i+2,j)+T_cf(i,j+1)&=c(i+2)+f(j,0)+c(i)+f(j+1,0)\\&\ge c(i+1)+f(j,0)+c(i+1)+f(j+1,0)\\&=T_cf(i+1,j)+T_cf(i+1,j+1), \end{aligned}$$

and

$$\begin{aligned} T_cf(i+1,j)+T_cf(i,j+2)&=c(i+1)+f(j,0)+c(i)+f(j+2,0)\\&\ge c(i)+f(j+1,0)+c(i+1)+f(j+1,0)\\&=T_cf(i,j+1)+T_cf(i+1,j+1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kulkarni, V.G. Two-day appointment scheduling with patient preferences and geometric arrivals. Queueing Syst 85, 173–209 (2017). https://doi.org/10.1007/s11134-016-9506-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-016-9506-x

Keywords

Mathematics Subject Classification