Skip to main content
Log in

Staffing large-scale service systems with distributional uncertainty

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense that even the arrival-rate distribution is not completely known to the manager. Rather, the manager has an estimate of the support of the arrival-rate distribution and the mean. The goal is to determine the number of servers needed to satisfy the quality-of-service constraint. Two cases are explored. First, the constraint is enforced on an overall delay probability, given the probability that different feasible arrival-rate distributions are selected. In the second case, the constraint has to be satisfied by every possible distribution. For both problems, asymptotically optimal solutions are developed based on Halfin–Whitt type scalings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avramidis, A.N., Deslauriers, A., L’Ecuyer, P.: Modeling daily arrivals to a telephone call center. Manag. Sci. 50(7), 896–908 (2004)

    Article  Google Scholar 

  2. Bandi, C., Bertsimas, D., Youssef, N.: Robust queueing theory. Oper. Res. 63(3), 676–700 (2015)

    Article  Google Scholar 

  3. Baron, O., Milner, J.: Staffing to maximize profit for call centers with alternate service-level agreements. Oper. Res. 57(3), 685–700 (2009)

    Article  Google Scholar 

  4. Bassamboo, A., Harrison, J.M., Zeevi, A.: Design and control of a large call center: asymptotic analysis of an LP-based method. Oper. Res. 54(3), 419–435 (2006)

    Article  Google Scholar 

  5. Bassamboo, A., Randhawa, R.S., Zeevi, A.: Capacity sizing under parameter uncertainty: safety staffing principles revisited. Manag. Sci. 56(10), 1668–1686 (2010)

    Article  Google Scholar 

  6. Bassamboo, A., Zeevi, A.: On a data-driven method for staffing large call centers. Oper. Res. 57(3), 714–726 (2009)

    Article  Google Scholar 

  7. Bertsimas, D., Doan, X.V.: Robust and data-driven approaches to call centers. Eur. J. Oper. Res. 207(2), 1072–1085 (2010)

    Article  Google Scholar 

  8. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

  9. Borst, S., Mandelbaum, A., Reiman, M.I.: Dimensioning large call centers. Oper. Res. 52(1), 17–34 (2004)

    Article  Google Scholar 

  10. Chen, B.P.K., Henderson, S.G.: Two issues in setting call center staffing levels. Ann. Oper. Res. 108(1), 175–192 (2001)

    Article  Google Scholar 

  11. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)

    Article  Google Scholar 

  12. Gans, N., Shen, H., Zhou, Y., Korolev, K., McCord, A., Ristock, H.: Parametric stochastic programming models for call-center workforce scheduling. Working paper (2009)

  13. Gurvich, I., Luedtke, J., Tezcan, T.: Staffing call centers with uncertain demand forecasts: a chance-constrained optimization approach. Manag. Sci. 56(7), 1093–1115 (2010)

    Article  Google Scholar 

  14. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3), 567–588 (1981)

    Article  Google Scholar 

  15. Harrison, J.M., Zeevi, A.: A method for staffing large call centers based on stochastic fluid models. Manuf. Serv. Oper. Manag. 7(1), 20–36 (2005)

    Article  Google Scholar 

  16. Jagers, A.A., van Doorn, E.A.: Convexity of functions which are generalizations of the Erlang loss function and the Erlang delay function. SIAM Rev. 33(2), 281–282 (1991)

    Article  Google Scholar 

  17. Janssen, A.J.E.M., Van Leeuwaarden, J.S.H., Zwart, B.: Refining square root safety staffing by expanding Erlang C. Oper. Res. 59(6), 1512–1522 (2011)

    Article  Google Scholar 

  18. Koçaǧa, Y.L., Armony, M., Ward, A.R.: Staffing call centers with uncertain arrival rates and cosourcing. Prod. Oper. Manag. 24(7), 1101–1117 (2014)

    Article  Google Scholar 

  19. Liao, S., Koole, G., Van Delft, C., Jouini, O.: Staffing a call center with uncertain non-stationary arrival rate and flexibility. OR Spectr. 34(3), 691–721 (2012)

    Article  Google Scholar 

  20. Liao, S., Van Delft, C., Vial, J.P.: Distributionally robust workforce scheduling in call centres with uncertain arrival rates. Optim. Methods Softw. 28(3), 501–522 (2013)

    Article  Google Scholar 

  21. Mandelbaum, A., Zeltyn, S.: Staffing many-server queues with impatient customers: constraint satisfaction in call centers. Oper. Res. 57(5), 1189–1205 (2009)

    Article  Google Scholar 

  22. Moallemi, C. C., Kumar, S., Van Roy, B.: Approximate and data-driven dynamic programming for queueing networks (2008). (Submitted for publication)

  23. Montiel, L.V., Bickel, J.E.: Generating a random collection of discrete joint probability distributions subject to partial information. Methodol. Comput. Appl. Probab. 15(4), 951–967 (2013)

    Article  Google Scholar 

  24. Rademacher, L.: Approximating the centroid is hard. In: Proceedings of 23th Annual ACM Symposium of Computational Geometry, Gyeongju, South Korea, pp. 302–305 (2007)

  25. Scarf, H.: A min-max solution of an inventory problem. Stud. Math. Theory Inventory Prod. 10, 201–209 (1958)

    Google Scholar 

  26. Whitt, W.: Dynamic staffing in a telephone call center aiming to immediately answer all calls. Oper. Res. Lett. 24(5), 205–212 (1999)

    Article  Google Scholar 

  27. Whitt, W.: Staffing a call center with uncertain arrival rate and absenteeism. Prod. Oper. Manag. 15(1), 88–102 (2006)

    Google Scholar 

  28. Zan, J., Hasenbein, J.J., Morton, D.P.: Asymptotically optimal staffing of service systems with joint QoS constraints. Queueing Syst. 78(4), 359–386 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Hasenbein.

Appendix

Appendix

Finding the centroid when \(n=4\) (Figs. 4, 5, and 6).

Fig. 4
figure 4

Projection of \(\mathcal {D}\) when \(\lambda _{}^{\omega _{3}} \le r<\lambda _{}^{\omega _{4}}\)

Fig. 5
figure 5

Projection of \(\mathcal {D}\) when \(\lambda _{}^{\omega _{2}} \le r<\lambda _{}^{\omega _{3}}\)

Fig. 6
figure 6

Projection of \(\mathcal {D}\) when \(\lambda _{}^{\omega _{1}} \le r<\lambda _{}^{\omega _{2}}\)

Proof of Lemma 5

We prove the statement by contradiction. Suppose there exists a distribution \(\mathbf {p}_{\textsc {t}}\) which is a maximizer of (21) and for which \(p_{\textsc {t}}^{\omega _k}>0\) for \(k\notin \{1,k^\prime ,k^\prime +1\}\). If \(k\in \{2,\ldots ,k^\prime -1\}\), we define a new distribution \(\tilde{\mathbf {p}}\) with

$$\begin{aligned} \tilde{p}^{\omega _1}= & {} p_{\textsc {t}}^{\omega _1}+\frac{\lambda _{}^{\omega _{k^\prime }}-\lambda _{}^{\omega _{k}}}{\lambda _{}^{\omega _{k^\prime }}-\lambda _{}^{\omega _{1}}}p_{\textsc {t}}^{\omega _k},\\ \tilde{p}^{\omega _{k^\prime }}= & {} p_{\textsc {t}}^{\omega _{k^\prime }}+\frac{\lambda _{}^{\omega _{k}}-\lambda _{}^{\omega _{1}}}{\lambda _{}^{\omega _{k^\prime }}-\lambda _{}^{\omega _{1}}}p_{\textsc {t}}^{\omega _k}, \end{aligned}$$

\(\tilde{p}^{\omega _k}=0\) and equal probabilities for all other scenarios in \(\mathbf {p}_{\textsc {t}}\). Since \({}^{(\lambda _{}^{\omega _{k}}-\lambda _{}^{\omega _{1}})}\!/_{(\lambda _{}^{\omega _{k^\prime }}-\lambda _{}^{\omega _{1}})}\) and \(\tilde{\alpha }(\beta ,\lambda _{}^{\omega _{k^\prime }},\lambda _{}^{\omega _{k^\prime }})\) are both positive, \(\tilde{\mathbf {p}}\) returns a larger value of the argument in (21) than \(\mathbf {p}_{\textsc {t}}\), leading to a contradiction. If \(k\in \{k^\prime +2,\ldots ,n\}\), define \(\tilde{\mathbf {p}}\) as

$$\begin{aligned} \tilde{p}^{\omega _1}= & {} p_{\textsc {t}}^{\omega _1}+\frac{\lambda _{}^{\omega _{k^\prime +1}}-\lambda _{}^{\omega _{k}}}{\lambda _{}^{\omega _{k^\prime +1}}-\lambda _{}^{\omega _{1}}}p_{\textsc {t}}^{\omega _k},\\ \tilde{p}^{\omega _{k^\prime +1}}= & {} p_{\textsc {t}}^{\omega _{k^\prime +1}}+\frac{\lambda _{}^{\omega _{k}}-\lambda _{}^{\omega _{1}}}{\lambda _{}^{\omega _{k^\prime +1}}-\lambda _{}^{\omega _{1}}}p_{\textsc {t}}^{\omega _k}, \end{aligned}$$

\(\tilde{p}^{\omega _k}=0\) and keep all other probabilities unchanged from \(\mathbf {p}_{\textsc {t}}\). A contradiction is again obtained since \({}^{(\lambda _{}^{\omega _{k}}-\lambda _{}^{\omega _{1}})}\!/_{(\lambda _{}^{\omega _{k^\prime +1}}-\lambda _{}^{\omega _{1}})}>1\). \(\square \)

Proof of Lemma 7

We prove (30) first. Assume \(d_m\) is the optimal solution to the maximization problem inside the limit for each \(m\in \mathbb {Z}^+\). Then we can rewrite the left-hand side of (30) as

$$\begin{aligned} \lim _{m\rightarrow \infty }\left|\sum _{k=1}^{l-1}p^{\omega _{k}}(d_m)\tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) +\sum _{k=l+1}^{n}p^{\omega _{k}}(d_m)\left( \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) -1\right) \right|. \end{aligned}$$
(35)

As m goes to infinity, \(\tilde{\alpha }(\beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}})\) converges pointwise to 0 when \(k<l\) and to 1 when \(k>l\) (see Corollary 13 from Zan et al. [28]). Using this observation and the fact that \(p^{\omega _{k}}(d_m)\) is uniformly bounded above by 1 for all m, we conclude that

$$\begin{aligned} \lim _{m\rightarrow \infty }\left[ \sum _{k=1}^{l-1}p^{\omega _{k}}(d_m)\tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) +\sum _{k=l+1}^{n}p^{\omega _{k}}(d_m)\left( \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) -1\right) \right] =0. \end{aligned}$$

Then, since absolute value is a continuous function, the limit in (35) exists and equals 0, which establishes (30).

We now consider (31). We define the following quantities:

$$\begin{aligned} d_m^F\in \mathop {{{\mathrm{arg\,max}}}}\limits _{d\in \mathcal {D}}\left\{ \sum _{k=1}^{n}p^{\omega _{k}}(d)\tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) \right\} \end{aligned}$$

and

$$\begin{aligned} d_m^H\in \mathop {{{\mathrm{arg\,max}}}}\limits _{d\in \mathcal {D}}\left\{ p^{\omega _{l}}(d)\tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{l}}\right) +\sum _{k=l+1}^n p^{\omega _{k}}(d)\right\} . \end{aligned}$$

Then, the result in (30) indicates that, for any \(\delta >0\), there exists an \(\bar{m}\) such that for all \(m>\bar{m}\),

$$\begin{aligned}&\left|\sum _{k=1}^{n}p^{\omega _{k}}\left( d_m^F\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) -\left( p^{\omega _{l}}\left( d_m^H\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{l}}\right) +\sum _{k=l+1}^n p^{\omega _{k}}\left( d_m^H\right) \right) \right|\nonumber \\&\quad \le \max \left\{ \sum _{k=1}^{n}p^{\omega _{k}}\left( d_m^F\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) \right. \nonumber \\&\qquad \left. -\left( p^{\omega _{l}}\left( d_m^F\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{l}}\right) +\sum _{k=l+1}^n p^{\omega _{k}}\left( d_m^F\right) \right) ,\right. \nonumber \\&\quad \left. \left( p^{\omega _{l}}\left( d_m^H\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{l}}\right) {+}\sum _{k=l+1}^n p^{\omega _{k}}\left( d_m^H\right) \right) {-}\sum _{k=1}^{n}p^{\omega _{k}}\left( d_m^H\right) \tilde{\alpha }\left( \beta ,\lambda _{m}^{\omega _{l}},\lambda _{m}^{\omega _{k}}\right) \right\} \nonumber \\&\quad \le \delta . \end{aligned}$$

This establishes (31). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hasenbein, J.J. Staffing large-scale service systems with distributional uncertainty. Queueing Syst 87, 55–79 (2017). https://doi.org/10.1007/s11134-017-9526-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9526-1

Keywords

Mathematics Subject Classification