Skip to main content
Log in

Asymptotically optimal open-loop load balancing

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In many distributed computing systems, stochastically arriving jobs need to be assigned to servers with the objective of minimizing waiting times. Many existing dispatching algorithms are basically included in the SQ(d) framework: Upon arrival of a job, \(d\ge 2\) servers are contacted uniformly at random to retrieve their state and then the job is routed to a server in the best observed state. One practical issue in this type of algorithm is that server states may not be observable, depending on the underlying architecture. In this paper, we investigate the assignment problem in the open-loop setting where no feedback information can flow dynamically from the queues back to the controller, i.e., the queues are unobservable. This is an intractable problem, and unless particular cases are considered, the structure of an optimal policy is not known. Under mild assumptions and in a heavy-traffic many-server limiting regime, our main result proves the optimality of a subset of deterministic and periodic policies within a wide set of (open-loop) policies that can be randomized or deterministic and can be dependent on the arrival process at the controller. The limiting value of the scaled stationary mean waiting time achieved by any policy in our subset provides a simple approximation for the optimal system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altman, E., Gaujal, B., Hordijk, A.: Multimodularity, convexity, and optimization properties. Math. Oper. Res. 25(2), 324–347 (2000)

    Article  Google Scholar 

  2. Anselmi, J., Gaujal, B.: The price of forgetting in parallel and non-observable queues. Perform. Eval. 68(12), 1291–1311 (2011)

    Article  Google Scholar 

  3. Anselmi, J., Gaujal, B., Nesti, T.: Control of parallel non-observable queues: asymptotic equivalence and optimality of periodic policies. Stoch. Syst. 5(1), 120–145 (2015)

    Article  Google Scholar 

  4. Baccelli, F., Brémaud, P.: Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences, vol. 26. Springer, Berlin (2003)

    Book  Google Scholar 

  5. Barlow, R.E., Proschan, F.: Mathematical Theory of Reliability. Wiley, New York (1965)

    Google Scholar 

  6. Bell, C.H., Stidham, S.: Individual versus social optimization in the allocation of customers to alternative servers. Manag. Sci. 29(7), 831–839 (1983)

    Article  Google Scholar 

  7. Bhulai, S., Farenhorst-Yuan, T., Heidergott, B., van der Laan, D.: Optimal balanced control for call centers. Ann. Oper. Res. 201(1), 39–62 (2012)

    Article  Google Scholar 

  8. Borst, S.C., Mandelbaum, A., Reiman, M.I.: Dimensioning large call centers. Oper. Res. 52(1), 17–34 (2004)

    Article  Google Scholar 

  9. Hajek, B.: Extremal splitting of point processes. Math. Oper. Res. 10, 543–556 (1986)

    Article  Google Scholar 

  10. Harchol-Balter, M., Scheller-Wolf, A., Young, A.R.: Surprising results on task assignment in server farms with high-variability workloads. In: SIGMETRICS/Performance, pp. 287–298. ACM (2009)

  11. Hordijk, A., Van der Laan, D.: The unbalance and bounds on the average waiting time for periodic routing to one queue. Math. Methods Oper. Res. 59(1), 1–23 (2004)

    Article  Google Scholar 

  12. Javadi, B., Kondo, D., Vincent, J.-M., Anderson, D.P.: Discovering statistical models of availability in large distributed systems: an empirical study of seti@home. IEEE Trans. Parallel Distrib. Syst. 22(11), 1896–1903 (2011)

    Article  Google Scholar 

  13. Javadi, B., Thulasiraman, P., Buyya, R.: Cloud resource provisioning to extend the capacity of local resources in the presence of failures. In: HPCC-ICESS, pp. 311–319. IEEE Computer Society (2012)

  14. Kleinrock, L.: Queueing Systems, Volume II: Computer Applications. Wiley Interscience, New York (1976). (Published in Russian, 1979. Published in Japanese, 1979.)

    Google Scholar 

  15. Lindley, D.V.: The theory of queues with a single server. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 277–289 (1952)

  16. Loynes, R.: The stability of a queue with nonindependent interarrival and service times. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 58, pp. 497–520 (1962)

  17. Sethuraman, J., Squillante, M.S. Optimal stochastic scheduling in multiclass parallel queues. In: SIGMETRICS ’99, pp. 93–102. ACM, New York (1999)

  18. Shirakawa, H., Mori, M., Kijima, M.: Further properties of extremal sequences in queues. Commun. Stat. Stoch. Models 4(1), 117–132 (1988)

    Article  Google Scholar 

  19. Shirakawa, H., Mori, M., Kijima, M.: Evaluation of regular splitting queues. Commun. Stat. Stoch. Models 5(2), 219–234 (1989)

    Article  Google Scholar 

  20. van der Laan, D.: Routing jobs to servers with deterministic service times. Math. Oper. Res. 30(1), 195–224 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatha Anselmi.

Appendix: Proof of Proposition 3

Appendix: Proof of Proposition 3

Since \(p_r = \mu _r \bar{v}\) is a constant and \(\frac{ \lambda _k k p_r}{\mu _r\Vert p\Vert (k+f_k)}<1\), we can directly use (54) to obtain

$$\begin{aligned} \overline{W}^{(k)}(\pi ^{(k)}) \le&R\frac{k+f_k}{\lambda _k k} + \sum _{r=1}^R \frac{\mu _r}{\Vert \mu \Vert } \, \mathcal {U}_r^{(k)}\left( \frac{\mu _r}{\Vert \mu \Vert (k+f_k)} \right) , \end{aligned}$$
(59a)

for any \(\pi ^{(k)}\in \mathcal {A}_{\bar{v}\mu -TTRR}^{(k)}\). Thus,

$$\begin{aligned} \limsup _{k\rightarrow \infty }\frac{f_k}{k} \overline{W}^{(k)}(\pi ^{(k)}) \le&\sum _{r=1}^R \frac{\mu _r^2}{2\Vert \mu \Vert } \, \limsup _{k\rightarrow \infty } \frac{f_k}{k} \frac{ \sigma _r^2 + \varsigma \frac{\Vert \mu \Vert }{\mu _r} }{ 1- \frac{\lambda _k k}{\Vert \mu \Vert (k+f_k)} } = \sum _{r=1}^R \frac{\mu _r^2 \bar{\sigma }_r^2 }{2\Vert \mu \Vert }. \end{aligned}$$
(60a)

On the other hand, using Lemma 1 when q is given by \(q_{r,k}=\mu _r/(\Vert \mu \Vert (k+f_k))\), we obtain

$$\begin{aligned} \inf _{\pi \in \mathcal {A}_{q}^{(k)}} \underline{W}^{(k)}(\pi )\ge & {} \sum _{r=1}^R\sum _{\kappa =1}^{k+f_k} q_{r,\kappa } \mathbb {E}\mathcal {W}_{r,\kappa }^{(k)}(\underline{V}(q_{r,\kappa }))\\= & {} \sum _{r=1}^R \frac{\mu _r}{\Vert \mu \Vert } \mathbb {E}\mathcal {W}_{r,\kappa }^{(k)}\left( \underline{V}\left( \frac{\mu _r}{\Vert \mu \Vert (k+f_k)}\right) \right) . \end{aligned}$$

Thus, as desired, we obtain

$$\begin{aligned} \lim _{k\rightarrow \infty } \frac{f_k}{k} \underline{W}^{(k)}(\pi ) \ge&\lim _{k\rightarrow \infty } \frac{f_k}{k} \sum _{r=1}^R \frac{\mu _r}{\Vert \mu \Vert } \mathbb {E}\mathcal {W}_{r,\kappa }^{(k)}\left( \underline{V}\left( \frac{\mu _r}{\Vert \mu \Vert (k+f_k)}\right) \right) \end{aligned}$$
(61a)
$$\begin{aligned} \ge&\lim _{k\rightarrow \infty } \frac{f_k}{k} \sum _{r=1}^R \frac{\mu _r}{\Vert \mu \Vert } \times \frac{ \lambda _k k \frac{\mu _r}{\Vert \mu \Vert }}{2(k+f_k)} \frac{\sigma _r^2 + \lceil \Vert \mu \Vert \frac{k+f_k}{\mu _r } \rceil \text{ Var }(T_1^{(k)})}{1 - \frac{ \lambda _k k }{\Vert \mu \Vert (k+f_k)} } \end{aligned}$$
(61b)
$$\begin{aligned} \ge&\lim _{k\rightarrow \infty } \sum _{r=1}^R \frac{\mu _r^2}{2 \Vert \mu \Vert } \times f_k \frac{\bar{\sigma }_r^2 }{ f_k + \frac{ o(1/k) k }{\Vert \mu \Vert } } \end{aligned}$$
(61c)
$$\begin{aligned} =&\sum _{r=1}^R \frac{\mu _r^2 \bar{\sigma }_r^2 }{2\Vert \mu \Vert }, \end{aligned}$$
(61d)

where in (61b) we have used the lower bound in (38).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anselmi, J. Asymptotically optimal open-loop load balancing. Queueing Syst 87, 245–267 (2017). https://doi.org/10.1007/s11134-017-9547-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9547-9

Keywords

Mathematics Subject Classification