Skip to main content
Log in

Equilibrium analysis of observable express service with customer choice

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study a stylized queueing model motivated by paid express lanes on highways. There are two parallel, observable first-come, first-served queues with finitely many servers: one queue has a faster service rate, but charges a fee to join, and the other is free but slow. Upon arrival, customers see the state of each queue and choose between them by comparing the respective disutility of time spent waiting, subject to random shocks. This framework encompasses both the multinomial logit and exponomial customer choice models. Using a fluid limit approximation, we give a detailed characterization of the equilibrium in this system. We show that social welfare is optimized when the express queue is exactly at (but not over) full capacity; however, in some cases, revenue is maximized by artificially creating congestion in the free queue. The latter behavior is caused by changes in the price elasticity of demand as the service capacity of the free queue fills up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afèche, P.: Delay performance in stochastic processing networks with priority service. Oper. Res. Lett. 31(5), 390–400 (2003)

    Article  Google Scholar 

  2. Afèche, P., Ata, B.: Bayesian dynamic pricing in queueing systems with unknown delay cost characteristics. Manuf. Serv. Oper. Manag. 15(2), 292–304 (2013)

    Article  Google Scholar 

  3. Afèche, P., Baron, O., Milner, J., Roet-Green, R.: Pricing and prioritizing time-sensitive customers with heterogeneous demand rates. Oper. Res. 67(4), 1184–1208 (2019)

    Google Scholar 

  4. Afèche, P., Pavlin, J.M.: Optimal price/lead-time menus for queues with customer choice: segmentation, pooling, and strategic delay. Manag. Sci. 62(8), 2412–2436 (2016)

    Article  Google Scholar 

  5. Afèche, P., Sarhangian, V.: Rational Abandonment from Priority Queues: Equilibrium Strategy and Pricing Implications. Technical report, Columbia University (2015)

  6. Alptekinoglu, A., Semple, J.H.: The exponomial choice model: a new alternative for assortment and price optimization. Oper. Res. 64(1), 79–93 (2016)

    Article  Google Scholar 

  7. Armony, M., Maglaras, C.: On customer contact centers with a call-back option: customer decisions, routing rules, and system design. Oper. Res. 52(2), 271–292 (2004)

    Article  Google Scholar 

  8. Aveklouris, A., Vlasiou, M., Zwart, B.: Bounds and limit theorems for a layered queueing model in electric vehicle charging. Queueing Syst. 93(1–2), 83–137 (2019)

    Article  Google Scholar 

  9. Besbes, O., Maglaras, C.: Revenue optimization for a make-to-order queue in an uncertain market environment. Oper. Res. 57(6), 1438–1450 (2009)

    Article  Google Scholar 

  10. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  11. Cao, P., Wang, Y., Xie, J.: Priority service pricing with heterogeneous customers: impact of delay cost distribution. Prod. Oper. Manag. 28(11), 2854–2876 (2019)

    Article  Google Scholar 

  12. Cui, S., Wang, Z., Yang, L.: The economics of line-sitting. Manag. Sci. 66(1), 227–242 (2020)

    Article  Google Scholar 

  13. Frolkova, M., Zwart, B.: Fluid limit of a PS-queue with multistage service. Probab. Eng. Inf. Sci. 33(1), 1–27 (2019)

    Article  Google Scholar 

  14. Gavirneni, S., Kulkarni, V.G.: Self-selecting priority queues with Burr distributed waiting costs. Prod. Oper. Manag. 25(6), 979–992 (2016)

    Article  Google Scholar 

  15. Göçmen, F.C.: Infrastructure scaling and pricing. Ph.D. thesis, Columbia University (2014)

  16. Göçmen, F.C., Phillips, R., van Ryzin, G.: Revenue Maximizing Dynamic Tolls for Managed Lanes: A Simulation Study. Technical report, Columbia University (2015)

  17. Guo, P., Zhang, Z.G.: Strategic queueing behavior and its impact on system performance in service systems with the congestion-based staffing policy. Manuf. Serv. Oper. Manag. 15(1), 118–131 (2013)

    Article  Google Scholar 

  18. Hale, J.K.: Ordinary Differential Equations. Dover Publications Inc., Mineola (2009)

    Google Scholar 

  19. Hassin, R.: Rational Queueing. Chapman and Hall/CRC, Boca Raton (2016)

    Book  Google Scholar 

  20. Hassin, R., Roet-Green, R.: The impact of inspection cost on equilibrium, revenue, and social welfare in a single-server queue. Oper. Res. 65(3), 804–820 (2017)

    Article  Google Scholar 

  21. Hu, M., Li, Y., Wang, J.: Efficient ignorance: information heterogeneity in a queue. Manag. Sci. 64(6), 2650–2671 (2017)

    Article  Google Scholar 

  22. Ibrahim, R.: Managing queueing systems where capacity is random and customers are impatient. Prod. Oper. Manag. 27(2), 234–250 (2018)

    Article  Google Scholar 

  23. Jiménez, T., Koole, G.: Scaling and comparison of fluid limits of queues applied to call centers with time-varying parameters. OR Spectrum 26(3), 413–422 (2004)

    Article  Google Scholar 

  24. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)

    Article  Google Scholar 

  25. Maglaras, C.: Revenue management for a multiclass single-server queue via a fluid model analysis. Oper. Res. 54(5), 914–932 (2006)

    Article  Google Scholar 

  26. Maglaras, C., Yao, J., Zeevi, A.: Optimal price and delay differentiation in large-scale queueing systems. Manag. Sci. 64(5), 2427–2444 (2017)

    Article  Google Scholar 

  27. Mandelbaum, A., Massey, W.A., Reiman, M.I.: Strong approximations for Markovian service networks. Queueing Syst. 30(1), 149–201 (1998)

    Article  Google Scholar 

  28. Naor, P.: The regulation of queue size by levying tolls. Econometrica 37, 15–24 (1969)

    Article  Google Scholar 

  29. Pender, J., Rand, R.H., Wesson, E.: A stochastic analysis of queues with customer choice and delayed information. Math. Oper. Res. 45(3), 1104–1126 (2020)

    Article  Google Scholar 

  30. Pender, J., Rand, R.H., Wesson, E.: Queues with choice via delay differential equations. Int. J. Bifurc. Chaos 27(4), 1730016–1 (2017)

    Article  Google Scholar 

  31. Pender, J., Rand, R.H., Wesson, E.: An analysis of queues with delayed information and time-varying arrival rates. Nonlinear Dyn. 91(4), 2411–2427 (2018)

    Article  Google Scholar 

  32. Ratliff, L.J., Dowling, C., Mazumdar, E., Zhang, B.: To observe or not to observe: queuing game framework for urban parking. In: Proceedings of the 55th IEEE Conference on Decision and Control, pp. 5286–5291 (2016)

  33. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  34. Taylor, T.A.: On-demand service platforms. Manuf. Serv. Oper. Manag. 20(4), 704–720 (2018)

    Article  Google Scholar 

  35. Wang, J., Baron, O., Scheller-Wolf, A.: M/M/c queue with two priority classes. Oper. Res. 63(3), 733–749 (2015)

    Article  Google Scholar 

  36. Wang, J., Cui, S., Wang, Z.: Equilibrium strategies in M/M/1 priority queues with balking. Prod. Oper. Manag. 28(1), 43–62 (2019)

    Article  Google Scholar 

  37. Yang, L., Debo, L.G., Gupta, V.: Search among queues under quality differentiation. Manag. Sci. 65(8), 3605–3623 (2019)

    Article  Google Scholar 

  38. Zhang, Y., Wang, J., Wang, F.: Equilibrium pricing strategies in retrial queueing systems with complementary services. Appl. Math. Model. 40(11–12), 5775–5792 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Xiaoshan Peng for many helpful discussions, and to the Associate Editor and referee for their thoughtful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya O. Ryzhov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

Below, we give the complete proofs of all results that were stated in the main text.

1.1 Proof of Theorem 1

Again, we assume \(Q_i\left( 0\right) = Q^n_i\left( 0\right) = q_i\left( 0\right) = 0\). We follow [29] in using the following result from [24]:

Lemma 1

A standard Poisson process \(\varPi \) and a standard Brownian motion B can be constructed on the same probability space in such a way that the limit

$$\begin{aligned} Z = \sup _{t\ge 0} \frac{\left| \varPi \left( t\right) - t - B\left( t\right) \right| }{\log \left( \max \left\{ 2,t\right\} \right) } \end{aligned}$$

is a.s. finite and has finite mean and finite moment-generating function in the neighborhood of zero.

Lemma 1 allows us to rewrite \(Q^n_i\) in terms of two standard Brownian motions \(B^\mathrm{arr}_i,B^\mathrm{dep}_i\) via

$$\begin{aligned}&\frac{1}{n}\varPi ^\mathrm{arr}_i\left( n\int ^t_0 \lambda p_i(Q^n_e(s),Q^n_r(s))\hbox {d}s\right) \nonumber \\&\quad = \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\nonumber \\&\qquad +\,\frac{1}{n}B^\mathrm{arr}_i\left( n \int ^t_0 \lambda p_i(Q^n_e(s),Q^n_r(s)) \hbox {d}s\right) + O\left( \frac{\log n}{n}\right) \nonumber \\&\quad = \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) , Q^n_r\right) \hbox {d}s\nonumber \\&\qquad +\, \frac{1}{\sqrt{n}}B^\mathrm{arr}_i\left( \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) + O\left( \frac{\log n}{n}\right) \end{aligned}$$
(44)

and

$$\begin{aligned}&\frac{1}{n}\varPi ^\mathrm{dep}_i\left( n\int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) \nonumber \\&\quad = \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\nonumber \\&\qquad +\, \frac{1}{n}B^\mathrm{dep}_i\left( n\int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) + O\left( \frac{\log n}{n}\right) \nonumber \\&\quad = \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\nonumber \\&\qquad +\, \frac{1}{\sqrt{n}}B^\mathrm{dep}_i\left( \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) + O\left( \frac{\log n}{n}\right) . \end{aligned}$$
(45)

Now, we calculate the difference between the scaled length process for queue \(i \in \left\{ e,r\right\} \) and its fluid limit, given by

$$\begin{aligned} Q^n_i\left( t\right) - q_i\left( t\right)= & {} \frac{1}{n}\varPi ^\mathrm{arr}_i\left( n\int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) - \int ^t_0 \lambda p_i\left( q_e\left( s\right) ,q_r\left( s\right) \right) \hbox {d}s\\&-\,\frac{1}{n}\varPi ^\mathrm{dep}_i\left( n \int ^t_0 \mu _i\min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) + \int ^t_0 \mu _i\min \left\{ q_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s, \end{aligned}$$

whence

$$\begin{aligned} \left| Q^n_i\left( t\right) - q_i\left( t\right) \right|\le & {} \left| \frac{1}{n}\varPi ^\mathrm{arr}_i\left( n\int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) - \int ^t_0 \lambda p_i\left( q_e\left( s\right) ,q_r\left( s\right) \right) \hbox {d}s\right| \nonumber \\&+\, \left| \frac{1}{n}\varPi ^\mathrm{dep}_i\left( n \int ^t_0 \mu _i\min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) - \int ^t_0 \mu _i\min \left\{ q_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right| .\nonumber \\ \end{aligned}$$
(46)

Substituting (44) into the first term of (46), we obtain

$$\begin{aligned}&\left| \frac{1}{n}\varPi ^\mathrm{arr}_i\left( n\int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) - \int ^t_0 \lambda p_i\left( q_e\left( s\right) ,q_r\left( s\right) \right) \hbox {d}s\right| \\&\quad \le \left| \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s - \int ^t_0 \lambda p_i\left( q_e\left( s\right) ,q_r\left( s\right) \right) \hbox {d}s\right| \\&\qquad + \left| \frac{1}{\sqrt{n}}B^\mathrm{arr}_i\left( \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) \right| + O\left( \frac{\log n}{n}\right) , \end{aligned}$$

with the Brownian term satisfying

$$\begin{aligned} \lim _{n\rightarrow \infty } \sup _{t' \le t}\left| \frac{1}{\sqrt{n}}B^\mathrm{arr}_i\left( \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s\right) \right|\le & {} \lim _{n\rightarrow \infty }\left| \frac{1}{\sqrt{n}}B^\mathrm{arr}_i\left( \lambda t\right) \right| \\= & {} 0. \end{aligned}$$

Substituting (45) into the second term of (46) yields

$$\begin{aligned}&\left| \frac{1}{n}\varPi ^\mathrm{dep}_i\left( n \int ^t_0 \mu _i\min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) - \int ^t_0 \mu _i\min \left\{ q_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right| \\&\quad \le \left| \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s - \int ^t_0 \mu _i\min \left\{ q_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right| \\&\qquad + \left| \frac{1}{\sqrt{n}}B^\mathrm{dep}_i\left( \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) \right| + O\left( \frac{\log n}{n}\right) , \end{aligned}$$

with the Brownian term satisfying

$$\begin{aligned} \lim _{n\rightarrow \infty } \sup _{t' \le t} \left| \frac{1}{\sqrt{n}}B^\mathrm{dep}_i\left( \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right) \right|\le & {} \lim _{n\rightarrow \infty }\left| \frac{1}{\sqrt{n}}B^\mathrm{dep}_i\left( \mu _i{\bar{q}}_i t\right) \right| \\= & {} 0. \end{aligned}$$

Thus, (46) has become

$$\begin{aligned}&\left| Q^n_i\left( t\right) - q_i\left( t\right) \right| \le \left| \int ^t_0 \lambda p_i\left( Q^n_e\left( s\right) ,Q^n_r\left( s\right) \right) \hbox {d}s - \int ^t_0 \lambda p_i\left( q_e\left( s\right) ,q_r\left( s\right) \right) \hbox {d}s\right| \\&+ \left| \int ^t_0 \mu _i \min \left\{ Q^n_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s - \int ^t_0 \mu _i\min \left\{ q_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right| + o\left( n\right) . \end{aligned}$$

The choice probability \(p_i\) and the departure function both have uniformly bounded derivatives by assumption P1, so there exist constants C and \(\varepsilon \) such that, for large enough n, we have

$$\begin{aligned} \left| Q^n_i\left( t\right) - q_i\left( t\right) \right| \le C \int ^t_0 \sup _{0\le s' \le s} \left| Q^n_i\left( s'\right) - q_i\left( s'\right) \right| \hbox {d}s + \varepsilon . \end{aligned}$$

Applying Gronwall’s lemma [18], we obtain

$$\begin{aligned} \sup _{0\le s \le t} \left| Q^n_i\left( s\right) - q_i\left( s\right) \right| \le \varepsilon \cdot \hbox {e}^{Ct}. \end{aligned}$$

We can then take \(\varepsilon \rightarrow 0\) to obtain the desired result.

The solution of (6) and (7) is non-negative because, for \(i\in \left\{ r,e\right\} \), \(q_i=0\) implies \(q'_i>0\) (the choice probabilities are always strictly positive). Uniqueness of the solution is shown by letting \(q^{(1)}_i,q^{(2)}_i\) be two sets of solutions with the same initial values, and writing

$$\begin{aligned}&\left| q^{(1)}_i\left( t\right) - q^{(2)}_i\left( t\right) \right| \le \left| \int ^t_0 \lambda p_i\left( q^{(1)}_e\left( s\right) ,q^{(1)}_r\left( s\right) \right) \hbox {d}s - \int ^t_0 \lambda p_i\left( q^{(2)}_e\left( s\right) ,q^{(2)}_r\left( s\right) \right) \hbox {d}s\right| \\&+ \,\left| \int ^t_0 \mu \min \left\{ q^{(1)}_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s - \int ^t_0 \mu \min \left\{ q^{(2)}_i\left( s\right) ,{\bar{q}}_i\right\} \hbox {d}s\right| . \end{aligned}$$

Then, we again invoke the properties of \(p_i\) and Gronwall’s lemma, as above, to conclude that \(q^{(1)}_i=q^{(2)}_i\).

1.2 Proof of Theorem 2

Existence of the equilibrium We first show the existence of the equilibrium using Brouwer’s fixed point theorem, which states that, if f is a continuous function mapping a compact convex set to itself, there exists a point \(x_0\) satisfying \(f\left( x_0\right) = x_0\).

We rewrite the equilibrium conditions (8) and (9) as

$$\begin{aligned} \lambda p_e - \mu _e \min \left\{ q_e,{\bar{q}}_e\right\} + q_e= & {} q_e, \end{aligned}$$
(47)
$$\begin{aligned} \lambda p_r - \mu _r \min \left\{ q_r,{\bar{q}}_r\right\} + q_r= & {} q_r. \end{aligned}$$
(48)

We can then express the system (47) and (48) as \(f\left( q\right) = q\), where \(q = \left( q_e,q_r\right) \). Because we have assumed continuity of \(p_e,p_r\) (assumption P1), it straightforwardly follows that f is continuous.

To show that \(f = \left( f_e,f_r\right) \) maps a compact convex set to itself, let us consider the first component \(f_e\) and suppose that \(q_e < {\bar{q}}_e\). In this case, we have the bound \(f_e\left( q_e\right) \le \lambda + {\bar{q}}_e\).

When \(q_e \ge {\bar{q}}_e\), we have \(f_e\left( q_e\right) = \lambda p_e\left( u\left( \frac{q_e}{\mu _e{\bar{q}}_e}\right) ,u_r,{\bar{u}}\right) - \mu _e {\bar{q}}_e + q_e\). Note that, if \({\bar{q}}_e \ge \frac{\lambda }{\mu _e}\), then \(f_e\left( q_e\right) < q_e\) and the codomain of \(f_e\) is automatically contained in the domain.

If \({\bar{q}}_e < \frac{\lambda }{\mu _e}\), let \({\tilde{q}}_e\) be a value satisfying

$$\begin{aligned} \lambda p_e\left( u\left( \frac{{\tilde{q}}_e}{\mu _e{\bar{q}}_e}\right) ,u\left( \infty \right) ,{\bar{u}}\right) = \mu _e {\bar{q}}_e. \end{aligned}$$

Then, for \(q_e \ge {\tilde{q}}_e\), we have

$$\begin{aligned} \lambda p_e\left( u\left( \frac{q_e}{\mu _e{\bar{q}}_e}\right) ,u_r,{\bar{u}}\right)\le & {} \lambda p_e\left( u\left( \frac{{\tilde{q}}_e}{\mu _e{\bar{q}}_e}\right) ,u_r,{\bar{u}}\right) \\\le & {} \lambda p_e\left( u\left( \frac{{\tilde{q}}_e}{\mu _e{\bar{q}}_e}\right) ,u\left( \infty \right) ,{\bar{u}}\right) \\= & {} \mu _e{\bar{q}}_e, \end{aligned}$$

implying \(f\left( q_e\right) \le q_e\). Finally, for \({\bar{q}}_e< q_e < {\tilde{q}}_e\), we have

$$\begin{aligned} \lambda p_e\left( u\left( \frac{q_e}{\mu _e{\bar{q}}_e}\right) ,u_r,{\bar{u}}\right) -\mu _e{\bar{q}}_e +q_e \le \lambda p_e\left( u\left( \frac{1}{\mu _e}\right) ,u_r\left( \infty \right) ,{\bar{u}}\right) -\mu _e{\bar{q}}_e +{\tilde{q}}_e. \end{aligned}$$
(49)

Denote by \({\hat{q}}_e\) the right-hand side of (49). Then, for any \(0 \le q_e \le \max \left\{ {\bar{q}}_e,{\tilde{q}}_e,{\hat{q}}_e,\frac{\lambda }{\mu _e}\right\} \), we have \(f\left( q_e\right) \) in the same interval, regardless of \(q_e\). Thus, the conditions for Brouwer’s fixed point theorem hold and the equilibrium exists.

Uniqueness of the equilibrium Let \(\lambda ,\mu _e,\mu _r\) and the disutility function u be given. Suppose that there are two non-identical equilibrium solutions \(\left( q^{(1)}_e,q^{(1)}_r\right) \) and \(\left( q^{(2)}_e,q^{(2)}_r\right) \). Let us focus on the case where \(q^{(1)}_e < q^{(2)}_e\) (the other case where we start with \(q^{(1)}_r < q^{(2)}_r\) is handled symmetrically).

We first show that, if \(q^{(1)}_e < q^{(2)}_e\), then \(q^{(1)}_r < q^{(2)}_r\) as well. To see this, let us assume the contrary, i.e., that \(q^{(1)}_r \ge q^{(2)}_r\). We derive

$$\begin{aligned} 0= & {} \lambda p_e\left( u_e\left( q^{(1)}_e\right) +c,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) - \mu _e\min \left\{ q^{(1)}_e,{\bar{q}}_e\right\} \nonumber \\\ge & {} \lambda p_e\left( u_e\left( q^{(2)}_e\right) +c,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) - \mu _e\min \left\{ q^{(1)}_e,{\bar{q}}_e\right\} \end{aligned}$$
(50)
$$\begin{aligned}\ge & {} \lambda p_e\left( u_e\left( q^{(2)}_e\right) +c,u_r\left( q^{(2)}_r\right) ,{\bar{u}}\right) - \mu _e\min \left\{ q^{(1)}_e,{\bar{q}}_e\right\} \end{aligned}$$
(51)
$$\begin{aligned}\ge & {} \lambda p_e\left( u_e\left( q^{(2)}_e\right) +c,u_r\left( q^{(2)}_r\right) ,{\bar{u}}\right) - \mu _e\min \left\{ q^{(2)}_e,{\bar{q}}_e\right\} \nonumber \\= & {} 0, \end{aligned}$$
(52)

where (50) is obtained from \(q^{(1)}_e < q^{(2)}_e\) and the fact that \(u' > 0\) (assumption U3) while \(p_e\) is decreasing in \(u_e\); equation (51) follows from the assumption that \(q^{(1)}_r \ge q^{(2)}_r\) and the fact that \(u' > 0\) while \(p_e\) is increasing in \(u_r\); and (52) follows from \(q^{(1)}_e < q^{(2)}_e\). However, since the first and last line both equal zero due to the equilibrium conditions, (50)–(52) must all hold with strict equality. Consequently, (51) and (52) imply that

$$\begin{aligned} \min \left\{ q^{(1)}_e,{\bar{q}}_e\right\} = \min \left\{ q^{(2)}_e,{\bar{q}}_e\right\} , \end{aligned}$$
(53)

whence we conclude \({\bar{q}}_e \le q^{(1)}_e < q^{(2)}_e\). From that, however, (50) yields

$$\begin{aligned} p_e\left( u\left( \frac{q^{(1)}_e}{\mu _e{\bar{q}}_e}\right) +c,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) = p_e\left( u\left( \frac{q^{(2)}_e}{\mu _e{\bar{q}}_e}\right) +c,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) , \end{aligned}$$

and this is impossible since \(u' > 0\) with strict inequality. Therefore, \(q^{(1)}_e < q^{(2)}_e\) implies \(q^{(1)}_r < q^{(2)}_r\).

Next, we claim that \(q^{(2)}_r > {\bar{q}}_r\). To see this, let us assume the opposite, i.e., that \(q^{(2)}_r \le {\bar{q}}_r\), whence \(u_r\left( q^{(1)}_r\right) = u_r\left( q^{(2)}_r\right) = u\left( \frac{1}{\mu _r}\right) \). We then have

$$\begin{aligned} \mu _e \min \left\{ q^{(2)}_e,{\bar{q}}_e\right\}= & {} \lambda p_e\left( u_e\left( q^{(2)}_e\right) +c,u\left( \frac{1}{\mu _r}\right) ,{\bar{u}}\right) \nonumber \\\le & {} \lambda p_e\left( u_e\left( q^{(1)}_e\right) +c,u\left( \frac{1}{\mu _r}\right) ,{\bar{u}}\right) \nonumber \\= & {} \mu _e \min \left\{ q^{(1)}_e,{\bar{q}}_e\right\} , \end{aligned}$$
(54)

and \(q^{(1)}_e < q^{(2)}_e\) implies that (54) holds with strict equality. This again implies (53) and the same reasoning as before can be repeated to obtain a contradiction. Therefore, \(q^{(2)}_r > {\bar{q}}_r\). A symmetric argument can be used to show \(q^{(2)}_e > {\bar{q}}_e\).

Combining the previous facts, (10) yields

$$\begin{aligned} p_o\left( u_e\left( q^{(1)}_e\right) ,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) = p_o\left( u\left( \frac{q^{(2)}_e}{\mu _e{\bar{q}}_e}\right) ,u\left( \frac{q^{(2)}_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) . \end{aligned}$$

However, from \(q^{(1)}_e < q^{(2)}_e\) and \(q^{(1)}_r < q^{(2)}_r\) we obtain

$$\begin{aligned} p_o\left( u_e\left( q^{(1)}_e\right) ,u_r\left( q^{(1)}_r\right) ,{\bar{u}}\right) < p_o\left( u\left( \frac{q^{(2)}_e}{\mu _e{\bar{q}}_e}\right) ,u\left( \frac{q^{(2)}_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) , \end{aligned}$$

regardless of whether \(q^{(1)}_e\) and \(q^{(1)}_r\) are under or over capacity, because \(p_o\) satisfies assumption P2. We conclude that it is impossible to have \(q^{(1)}_e < q^{(2)}_e\) and still satisfy the equilibrium conditions for both solutions.

1.3 Proof of Theorem 3

We examine each of regimes R1–R4 separately. In each regime, we write (6) and (7) as

$$\begin{aligned} \left( q'_e,q'_r\right) = \left( f_e\left( q_e,q_r\right) ,f_r\left( q_e,q_r\right) \right) , \end{aligned}$$

obtain all of the first-order partial derivatives \(\frac{\partial f_i}{\partial q_i}\) for \(i \in \left\{ e,r\right\} \), put them into matrix form (the Jacobian) and evaluate this matrix at the equilibrium \(\left( q^*_e,q^*_r\right) \), which we know exists and is unique from the preceding. The equilibrium is locally stable if both eigenvalues of the Jacobian are negative [33].

Regime R1 We have \(q^*_e \ge {\bar{q}}_e\), \(q^*_r \ge {\bar{q}}_r\) and the Jacobian is given by

$$\begin{aligned} J^{R1} = \lambda \left[ \begin{array}{c c} \frac{\partial p_e}{\partial u_e}\frac{\partial u_e}{\partial q_e} &{}\quad \frac{\partial p_e}{\partial u_r}\frac{\partial u_r}{\partial q_r}\\ \frac{\partial p_r}{\partial u_e}\frac{\partial u_e}{\partial q_e} &{}\quad \frac{\partial p_r}{\partial u_r}\frac{\partial u_r}{\partial q_r} \end{array} \right] . \end{aligned}$$

Letting \(e_1,e_2\) be the eigenvalues, the characteristic equation is given by

$$\begin{aligned} \left( \lambda \frac{\partial p_e}{\partial u_e}\frac{\partial u_e}{\partial q_e} -e_1\right) \cdot \left( \lambda \frac{\partial p_r}{\partial u_r}\frac{\partial u_r}{\partial q_r}-e_2\right) - \lambda ^2 \frac{\partial p_e}{\partial u_r}\frac{\partial u_r}{\partial q_r} \cdot \frac{\partial p_r}{\partial u_e}\frac{\partial u_e}{\partial q_e} = 0, \end{aligned}$$

which can be rewritten as

$$\begin{aligned} \lambda ^2 \frac{\partial u_e}{\partial q_e}\frac{\partial u_r}{\partial q_r}\left( \frac{\partial p_e}{\partial u_e}\frac{\partial p_r}{\partial u_r} - \frac{\partial p_e}{\partial u_r}\frac{\partial p_r}{\partial u_e}\right) +e_1e_2= \lambda e_1 \frac{\partial p_r}{\partial u_r}\frac{\partial u_r}{\partial q_r} + \lambda e_2 \frac{\partial p_e}{\partial u_e}\frac{\partial u_e}{\partial q_e}. \end{aligned}$$
(55)

We argue that

$$\begin{aligned} \det \left( J^{R1}\right) = \lambda ^2 \frac{\partial u_e}{\partial q_e}\frac{\partial u_r}{\partial q_r}\left( \frac{\partial p_e}{\partial u_e}\frac{\partial p_r}{\partial u_r} - \frac{\partial p_e}{\partial u_r}\frac{\partial p_r}{\partial u_e}\right) \end{aligned}$$

is positive, which would imply that the product \(e_1 e_2\) in (55) is also positive. We first observe that the product \(\frac{\partial u_e}{\partial q_e}\frac{\partial u_r}{\partial q_r}\) is positive since, for example,

$$\begin{aligned} \frac{\partial u_e}{\partial q_e} = u'\left( \frac{q^*_e}{\mu _e{\bar{q}}_e}\right) \frac{1}{\mu _e{\bar{q}}_e} > 0 \end{aligned}$$

by assumption U3. The same is true of \(\frac{\partial u_r}{\partial q_r}\).

Assumption P3 implies

$$\begin{aligned} \frac{\partial p_e}{\partial u_e} + \frac{\partial p_e}{\partial u_r} + \frac{\partial p_e}{\partial {\bar{u}}} = 0 \end{aligned}$$

since changing all the disutilities by the same amount does not change the probability of any choice. Since \(\frac{\partial p_e}{\partial {\bar{u}}} > 0\) by assumption P2, it follows that \(\frac{\partial p_e}{\partial u_e} + \frac{\partial p_e}{\partial u_r} < 0\), whence

$$\begin{aligned} \frac{\partial p_e}{\partial u_e} < - \frac{\partial p_e}{\partial u_r} \end{aligned}$$
(56)

and, symmetrically,

$$\begin{aligned} \frac{\partial p_r}{\partial u_r} < - \frac{\partial p_r}{\partial u_e}. \end{aligned}$$
(57)

From this we obtain

$$\begin{aligned} \frac{\partial p_e}{\partial u_e}\frac{\partial p_r}{\partial u_r}> - \frac{\partial p_e}{\partial u_r}\frac{\partial p_r}{\partial u_r} > \frac{\partial p_e}{\partial u_r}\frac{\partial p_r}{\partial u_e}, \end{aligned}$$

where the first inequality is obtained from (56) and the fact that \(\frac{\partial p_e}{\partial u_e} < 0\), while the second inequality is obtained from (57) and the fact that \(\frac{\partial p_e}{\partial u_r} > 0\). Thus, we conclude that \(\det \left( J^{R1}\right) > 0\) and so both \(e_1,e_2\) have the same sign.

From the preceding, it follows that the left-hand side of (55) is positive. On the right-hand side of (55), suppose that \(e_1,e_2\) are both positive; then we have

$$\begin{aligned} \lambda e_1 \frac{\partial p_r}{\partial u_r}\frac{\partial u_r}{\partial q_r}< 0, \qquad \lambda e_2 \frac{\partial p_e}{\partial u_e}\frac{\partial u_e}{\partial q_e} < 0 \end{aligned}$$

since \(\frac{\partial p_r}{\partial u_r},\frac{\partial p_e}{\partial u_e} < 0\) while \(\frac{\partial u_r}{\partial q_r},\frac{\partial u_e}{\partial q_e} > 0\). Therefore, both \(e_1,e_2\) must be negative, as required.

Regime R2 We have \(q^*_e < {\bar{q}}_e\), \(q^*_r < {\bar{q}}_r\) and the Jacobian is given by

$$\begin{aligned} J^{R2} = \lambda \left[ \begin{array}{c c} -\mu _e &{}\quad 0\\ 0 &{}\quad -\mu _r \end{array} \right] , \end{aligned}$$

from which the conclusion directly follows.

Regime R3 We have \(q^*_e \ge {\bar{q}}_e\), \(q^*_r < {\bar{q}}_r\) and the Jacobian is given by

$$\begin{aligned} J^{R3} = \lambda \left[ \begin{array}{c c} \lambda \frac{\partial p_e}{\partial u_e}\frac{\partial u_e}{\partial q_e} &{}\quad 0\\ \lambda \frac{\partial p_r}{\partial u_e}\frac{\partial u_e}{\partial q_e} &{}\quad -\mu _r \end{array} \right] , \end{aligned}$$

which is a lower triangular matrix, meaning that its eigenvalues are on the diagonal. It is easy to see that both are negative.

Regime R4 The proof is very similar to the previous case and is omitted.

1.4 Proof of Theorem 4

The assumptions on v imply that, for any \(s_1 < s_2\), we have

$$\begin{aligned} v\left( s_2\right) - v\left( s_1\right) > u\left( s_2\right) - u\left( s_1\right) . \end{aligned}$$
(58)

This fact will be used to show the desired result in each of the relevant regimes.

Regime R2 Since both queues are under capacity, we have \(u_e\left( q^u_e\right) = u\left( \frac{1}{\mu _e}\right) \) and \(u_r\left( q^u_r\right) = u\left( \frac{1}{\mu _r}\right) \). From (58), we obtain

$$\begin{aligned} v\left( \frac{1}{\mu _e}\right) - u\left( \frac{1}{\mu _e}\right) \le v\left( \frac{1}{\mu _r}\right) - u\left( \frac{1}{\mu _r}\right) < {\bar{v}} - {\bar{u}}. \end{aligned}$$
(59)

We will now show that \(q^u_e < q^v_e\) by contradiction. Suppose that \(q^u_e \ge q^v_e\). It follows that the express queue continues to be under capacity when we switch to v. We then derive

$$\begin{aligned} \lambda p_e\left( v_e\left( q^v_e\right) +c,v_r\left( q^u_r\right) ,{\bar{v}}\right)= & {} \lambda p_e\left( v_e\left( q^u_e\right) +c,v_r\left( q^u_r\right) ,{\bar{v}}\right) \end{aligned}$$
(60)
$$\begin{aligned}= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{1}{\mu _r}\right) ,{\bar{v}}\right) , \end{aligned}$$
(61)

where (60) and (61) follow because both \(q^u_e,q^v_e < {\bar{q}}_e\). Next, we let \(\delta = v\left( \frac{1}{\mu _r}\right) - u\left( \frac{1}{\mu _r}\right) \), note that \(\delta > 0\), and observe that

$$\begin{aligned} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{1}{\mu _r}\right) ,{\bar{v}}\right)= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c-\delta ,v\left( \frac{1}{\mu _r}\right) -\delta ,{\bar{v}}-\delta \right) \end{aligned}$$
(62)
$$\begin{aligned}= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c-\delta ,u\left( \frac{1}{\mu _r}\right) ,{\bar{v}}-\delta \right) \nonumber \\> & {} \lambda p_e\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{1}{\mu _r}\right) ,{\bar{u}}\right) \end{aligned}$$
(63)
$$\begin{aligned}= & {} \mu _e q^u_e \end{aligned}$$
(64)
$$\begin{aligned}\ge & {} \mu _e q^v_e. \end{aligned}$$
(65)

Above, (62) is due to assumption P3, (63) follows from assumption P2 combined with (59), and (64) follows by (8).

To obtain the desired contradiction, we consider two cases, one where \(q^v_r < {\bar{q}}_r\) and one where \(q^v_r \ge {\bar{q}}_r\). Suppose that \(q^v_r < {\bar{q}}_r\). Then, both queues are under capacity with v as the disutility function, so (8) implies

$$\begin{aligned} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{1}{\mu _r}\right) ,{\bar{v}}\right) = \mu _e q^v_e. \end{aligned}$$

On the other hand, if \(q^v_r \ge {\bar{q}}_r\), we have \(q^v_r > q^u_r\) and

$$\begin{aligned} \lambda p_e\left( v_e\left( q^v_e\right) +c,v_r\left( q^u_r\right) ,{\bar{v}}\right)< & {} \lambda p_e\left( v_e\left( q^v_e\right) +c,v_r\left( q^v_r\right) ,{\bar{v}}\right) \\= & {} \mu _e q^v_e, \end{aligned}$$

by assumption P2. Either case, when combined with (65), yields \(q^v_e < q^v_e\), which is impossible; therefore, we must have \(q^u_e < q^v_e\).

Regime R4 In this regime, only the express queue is under capacity. There are two possible permutations

$$\begin{aligned} u\left( \frac{1}{\mu _e}\right)< {\bar{u}} \le u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) , \qquad u\left( \frac{1}{\mu _e}\right)< u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) < {\bar{u}}. \end{aligned}$$

Applying (58) to both of these yields

$$\begin{aligned} v\left( \frac{1}{\mu _e}\right) - u\left( \frac{1}{\mu _e}\right)< & {} {\bar{v}} - {\bar{u}} \le v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) , \end{aligned}$$
(66)
$$\begin{aligned} v\left( \frac{1}{\mu _e}\right) - u\left( \frac{1}{\mu _e}\right)< & {} v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) < {\bar{v}} - {\bar{u}}. \end{aligned}$$
(67)

First, let us suppose that permutation (66) is correct. Again, we proceed by contradiction and assume that \(q^u_e \ge q^v_e\). Since the express queue is under capacity with either disutility function, we have

$$\begin{aligned} \lambda p_e\left( v_e\left( q^v_e\right) +c,v_r\left( q^u_r\right) ,{\bar{v}}\right)= & {} \lambda p_e\left( v_e\left( q^u_e\right) +c,v_r\left( q^u_r\right) ,{\bar{v}}\right) \\= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{v}}\right) . \end{aligned}$$

Letting \(\delta = {\bar{v}} - {\bar{u}}\), we further derive

$$\begin{aligned} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{v}}\right)= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c-\delta ,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -\delta ,{\bar{v}}-\delta \right) \end{aligned}$$
(68)
$$\begin{aligned}= & {} \lambda p_e\left( v\left( \frac{1}{\mu _e}\right) +c-\delta ,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -\delta ,{\bar{u}}\right) \nonumber \\> & {} \lambda p_e\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) \end{aligned}$$
(69)
$$\begin{aligned}= & {} \mu _e q^u_e\nonumber \\\ge & {} \mu _e q^v_e, \end{aligned}$$
(70)

where, as before, (68) is due to assumption P3, while (69) follows from (66) combined with assumption P2. From (70) and assumption P2, we conclude that \(q^u_r > q^v_r\), otherwise there will be no way to satisfy (8).

Now, (10) yields

$$\begin{aligned} 0= & {} \lambda p_o\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) - \lambda + \mu _e q^u_e + \mu _r\min \left\{ q^u_r,{\bar{q}}_r\right\} \nonumber \\\ge & {} \lambda p_o\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) - \lambda + \mu _e q^v_e + \mu _r\min \left\{ q^v_r,{\bar{q}}_r\right\} \nonumber \\= & {} \lambda p_o\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) - \lambda p_o\left( v\left( \frac{1}{\mu _e}\right) +c,v_r\left( q^v_r\right) ,{\bar{v}}\right) ,\qquad \end{aligned}$$
(71)

whence

$$\begin{aligned} p_o\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right) \le p_o\left( v\left( \frac{1}{\mu _e}\right) +c,v_r\left( q^v_r\right) ,{\bar{v}}\right) . \end{aligned}$$
(72)

At the same time, letting \(\delta = v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) \), we obtain

$$\begin{aligned} p_o\left( u\left( \frac{1}{\mu _e}\right) +c,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}\right)= & {} p_o\left( u\left( \frac{1}{\mu _e}\right) +c+\delta ,u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) +\delta ,{\bar{u}}+\delta \right) \nonumber \\= & {} p_o\left( u\left( \frac{1}{\mu _e}\right) +c+\delta ,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{u}}+\delta \right) \nonumber \\> & {} p_o\left( v\left( \frac{1}{\mu _e}\right) +c,v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) ,{\bar{v}}\right) \end{aligned}$$
(73)
$$\begin{aligned}> & {} p_o\left( v\left( \frac{1}{\mu _e}\right) +c,v_r\left( q^v_r\right) ,{\bar{v}}\right) , \end{aligned}$$
(74)

where the first equality is due to assumption P3, while (73) follows from (66) and assumption P2, while (74) follows from assumption P2 and \(q^u_r > q^v_r\). Clearly (72) and (74) contradict each other, whence we conclude that \(q^u_e < q^v_e\).

Finally, we suppose that permutation (67) is correct. In this case, however, the proof is nearly identical. The only difference is that, in order to obtain (70), we use \(\delta = v\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) -u\left( \frac{q^u_r}{\mu _r{\bar{q}}_r}\right) \), while (73) is obtained by using \(\delta = {\bar{v}} - {\bar{u}}\). The same contradiction then follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ryzhov, I.O. Equilibrium analysis of observable express service with customer choice. Queueing Syst 99, 243–281 (2021). https://doi.org/10.1007/s11134-021-09720-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-021-09720-z

Keywords

Mathematics Subject Classification

Navigation