Skip to main content
Log in

Interval Monte Carlo as an Alternative to Second-Order Sampling for Estimating Ecological Risk

  • Published:
Reliable Computing

Abstract

Interval Monte Carlo offers an alternative to second-order approaches for modeling measurement uncertainty in a simulation framework. Using the example of computing quasi-extinction decline risk for an ecological population, an interval Monte Carlo model is built. If the model is not written optimally, the mean and standard deviation of the growth rate repeat, then the bounds on the quasi-extinction risk will be sub-optimal. Depending on your operational definition of what an interval is, the sub-optimal bounds may be the best possible bounds. A comparison between second-order and interval Monte Carlo is made, which reveals that second-order approaches can underestimate the upper bound on the quasi-extinction decline risk to the population when there are a large number of parameters that need to be sampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akçakaya, H. R., Burgman, M. A., and Ginzburg, L. R.: AppliedPopulation Ecology: Principles and Computer Exercises using RAMAS Ecolab, Sinauer Associates, Sunderland, 1999.

    Google Scholar 

  2. Akçakaya, H. R., Burgman, M. A., Kindvall, O., Wood, C. C., Sjogren-Gulve, P., Hatfield, J. S., and McCarthy, M. A. (eds): Species Conservation and Management: Case Studies, Oxford University Press, 2004.

  3. Ferson, S. and Hajagos, J. G.: Arithmetic with Uncertain Numbers: Rigorous and (Often) Best Possible Answers, Reliability Engineeringand System Safety 85 (2004), pp. 135–152.

    Article  Google Scholar 

  4. Ginzburg, L. R., Slobodkin, L. B., Johnson, K., and Bindman, A. G.: Quasiextinction Probabilities as a Measure of Impact on Population Growth, Risk Analysis 2 (1982), pp. 171–181.

    Article  Google Scholar 

  5. Hansen, E.: Sharpness in Interval Computations, Reliable Computing 3 (1) (1997), pp. 7–29.

    Article  Google Scholar 

  6. Hansen, E. and Walster, G. W.: Global Optimization Using Interval Analysis, Second Edition, Marcel Dekker, New York, 2004. London, 2001.

    Google Scholar 

  7. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, Springer-Verlag.

  8. Jaynes, E. T.: Probability Theory: The Logic ofScience, Cambrdige University Press, Cambridge, 2003.

    Google Scholar 

  9. Kreinovich, V., Longpre, L., and Buckley, J. J.: Are There Efficient Necessary and Sufficient Conditions for Straightforward Interval Computations to Be Exact?, Reliable Computing 9 (5) (2003), pp. 349–358.

    Article  MathSciNet  Google Scholar 

  10. Lewontin, R. C. and Cohen, D.: On Population Growth in a Randomly Varying Environment, Proceedings of the National Academy of Sciences 62 (1969), pp. 1056–1060.

    Article  MathSciNet  Google Scholar 

  11. 11. Moore, R.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

  12. Moore, R. E.: Methods and Applications of Interval Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

    MATH  Google Scholar 

  13. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.

  14. Rump, S. M.: Fast and Parallel Interval Arithmetic, BIT 39 (3) (1999), pp. 534–554.

    Article  MathSciNet  Google Scholar 

  15. Rump, S. M.: INTLAB—Interval Laboratory, in: Csendes, T. (ed.), Developments in Reliable Computing, Kluwer Academic Publishers, 1999, pp. 77–104.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos G. Hajagos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajagos, J.G. Interval Monte Carlo as an Alternative to Second-Order Sampling for Estimating Ecological Risk. Reliable Comput 13, 71–81 (2007). https://doi.org/10.1007/s11155-006-9019-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9019-0

Keywords

Navigation