Skip to main content
Log in

Solving Interval Constraints by Linearization in Computer-Aided Design

  • Published:
Reliable Computing

Abstract

Current parametric CAD systems require geometric parameters to have fixed values. Specifying fixed parameter values implicitly adds rigid constraints on the geometry, which have the potential to introduce conflicts during the design process. This paper presents a soft constraint representation scheme based on nominal interval. Interval geometric parameters capture inexactness of conceptual and embodiment design, uncertainty in detail design, as well as boundary information for design optimization. To accommodate under-constrained and over-constrained design problems, a double-loop Gauss-Seidel method is developed to solve linear constraints. A symbolic preconditioning procedure transforms nonlinear equations to separable form. Inequalities are also transformed and integrated with equalities. Nonlinear constraints can be bounded by piecewise linear enclosures and solved by linear methods iteratively. A sensitivity analysis method that differentiates active and inactive constraints is presented for design refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldefeld, B.: Variation of Geometries Based on a Geometric-Reasoning Method, Computer- Aided Design 20 (3) (1988), pp. 117–126.

    Article  MATH  Google Scholar 

  2. Aldfeld, B.: Rule-Based Approach to Variational Geometry, in: Smith, A. (ed.), Knowledge Engineering and Computer Modelling in CAD, Proceedings of the 7th International Conference on the Computer as a Design Tool, September 2–5, 1986, London, pp. 59–67.

  3. Alefeld, G.: Bounding the Slope of Polynomial Operators and Some Applications, Computing 26 (1981), pp. 227–237.

    Article  MATH  MathSciNet  Google Scholar 

  4. Alefeld, G.: On the Convergence of Some Interval-Arithmetic Modifications of Newton's Method, SIAM Journal on Numerical Analysis 21 (2) (1984), pp. 363–372.

    Article  MATH  MathSciNet  Google Scholar 

  5. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    MATH  Google Scholar 

  6. Alefeld, G. and Mayer, G.: Interval Analysis: Theory and Application, Journal of Computational and Applied Mathematics 121 (1–2) (2000), pp. 421–464.

    Article  MATH  MathSciNet  Google Scholar 

  7. Alefeld, G. and Platzoder, L.: A Quadratically Convergent Krawczyk-Like Algorithm, SIAM Journal on Numerical Analysis 20 (1) (1983), pp. 210–219.

    Article  MATH  MathSciNet  Google Scholar 

  8. Anantha, R., Kramer, G. A., and Crawford, R. H.: Assembly Modelling by Geometric Constraint Satisfaction, Computer-Aided Design 28 (9) (1996), pp. 707–722.

    Article  Google Scholar 

  9. Benhamou, F. and Granvilliers, L.: Automatic Generation of Numerical Redundancies for Non- Linear Constraint Solving, Reliable Computing 3 (3) (1997), pp. 335–344.

    Article  MATH  MathSciNet  Google Scholar 

  10. Berz, M.: Modern Map Methods in Particle Beam Physics, Academic Press, San Diego, 1999.

    Google Scholar 

  11. Berz, M. and Hoffstatter, G.: Computation and Application of Taylor Polynomials with Interval Remainder Bounds, Reliable Computing 4 (1) (1998), pp. 83–97.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bliek, C.: Computer Methods for Design Automation, unpublished Ph.D. thesis, Massachusetts Institute of Technology, 1992.

  13. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R.: Geometric Constraint Solver, Computer-Aided Design 27 (6) (1995), pp. 487–501.

    Article  MATH  Google Scholar 

  14. Buchberger, B., Collins, G., and Kutzler, B.: Algebraic Methods for Geometric Reasoning, Annual Review of Computer Science 3 (1988), pp. 85–120.

    Article  MathSciNet  Google Scholar 

  15. Ceberio, M. and Granvilliers, L.: Horner's Rule for Interval Evaluation Revisited, Computing 69 (1) (2002), pp. 51–81.

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, F. and Lou, W.: Degree Reduction of Interval Bezier Curves, Computer-Aided Design 32 (10) (2000), pp. 571–582.

    Article  Google Scholar 

  17. Chen, X.: A Verification Method for Solutions of Nonsmooth Equations, Computing 58 (1997), pp. 281–294

    Article  MATH  MathSciNet  Google Scholar 

  18. Chiu, C.-K. and Lee, J. H.-M.: Efficient Interval Linear Equality Solving in Constraint Logic Programming, Reliable Computing 8 (2) (2002), pp. 139–174.

    Article  MATH  MathSciNet  Google Scholar 

  19. Chyz, W.: Constraint Management for CSG, Unpublished Master Thesis, Massachusetts Institute of Technology, 1985.

  20. Collins, G. E. and Akritas, A. G.: Polynomial Real Root Isolation Using Descarte's Rule of Signs, in: Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation, August 10–12, 1976, Yorktown Heights, New York, pp. 272–275.

  21. Collins, G. E. and Johnson, J. R.: Quantifier Elimination and the Sign Variation Method for Real Root Isolation, in: Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, July 17–19, 1989 Portland, Oregon, pp. 264–271.

  22. Duff, T.: Interval Arithmetic and Recursive Subdivision for Implicit Functions and Constructive Solid Geometry, Computer Graphics 26 (2) (1992), pp. 131–138.

    Article  MathSciNet  Google Scholar 

  23. Finch, W. W. and Ward, A. C.: A Set-Based System for Eliminating Infeasible Designs in Engineering Problems Dominated by Uncertainty, in: ASME Proceedings of DETC97/dtm-3886, Sept. 14–17, 1997, Sacramento, CA, USA.

  24. Fudos, I. and Hoffmann, C. M.: A Graph-Constructive Approach to Solving Systems of Geometric Constraints, ACM Transactions on Graphics 16 (2) (1997), pp. 179–216.

    Article  Google Scholar 

  25. Gao, X.-S. and Chou, S.-C.: Solving Geometric Constraint Systems II: A Symbolic Approach and Decision of Rc-constructibility, Computer Aided-Design 30 (2) (1998), pp. 115–122.

    Article  Google Scholar 

  26. Garloff, J.: The Bernstein Algorithm, Interval Computations (2) (1993), pp. 154–168.

  27. Ge, J.-X., Chou, S.-C., and Gao, X.-S.: Geometric Constraint Satisfaction Using Optimization Methods, Computer-Aided Design 31 (14) (1999), pp. 867–879.

    Article  MATH  Google Scholar 

  28. Gossard, D. C., Zuffante, R. P., and Sakurai, H.: Representing Dimensions, Tolerances, and Features in MCAE Systems, IEEE Computer Graphics & Applications 8 (3) (1988), pp. 51–59.

    Article  Google Scholar 

  29. Hansen, E.: Bounding the Solution of Interval Linear Equations, SIAM Journal on Numerical Analysis 29 (5) (1992), pp. 1493–1503.

    Article  MATH  MathSciNet  Google Scholar 

  30. Hansen, E.: Interval Arithmetic in Matrix Computations, SIAM Journal on Numerical Analysis 2 (1965), pp. 308–320.

    Article  Google Scholar 

  31. Hansen, E. R.: Interval Forms of Newton's Method, BIT 20 (1978), pp. 153–163.

    MATH  Google Scholar 

  32. Hansen, E.: Preconditioning Linearized Equations, Computing 58 (2) (1997), pp. 187–196.

    Article  MATH  MathSciNet  Google Scholar 

  33. Hansen, E. R. and Greenberg, R. I.: An Interval Newton Method, Applied Mathematics and Computation 12 (2–3) (1983), pp. 89–98.

    Article  MATH  MathSciNet  Google Scholar 

  34. Hansen, E. and Sengupta, S.: Bounding Solutions of Systems of Equations Using Interval Analysis, BIT 21 (1981), pp. 203–211.

    Article  MATH  MathSciNet  Google Scholar 

  35. Hansen, E. and Smith, R.: Interval Arithmetic in Matrix Computations, Part II, SIAM Journal on Numerical Analysis 4 (1) (1967), pp. 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  36. Hansen, E. and Walster, G. W.: Global Optimization Using Interval Analysis, 2nd Edition, Marcel Dekker, New York, 2004.

    MATH  Google Scholar 

  37. Hansen, E. R. and Walster, G. W.: Sharp Bounds on Interval Polynomial Roots, Reliable Computing 8 (2) (2002), pp. 115–122.

    Article  MATH  MathSciNet  Google Scholar 

  38. Hillyard, R. C. and Braid, I. C., Analysis of Dimensions and Tolerances in Computer-Aided Mechanical Design, Computer-Aided Design 10 (3) (1978), pp. 161–166.

    Article  Google Scholar 

  39. Hoffmann, C. M., Lomonosov, A., and Sitharam, M.: Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD, Journal of Symbolic Computation 31 (4) (2001), pp. 367–408.

    Article  MathSciNet  Google Scholar 

  40. Hoffmann, C. M., Lomonosov, A., and Sitharam, M.: Decomposition Plans for Geometric Constraint Systems, Part II: New Algorithms, Journal of Symbolic Computation 31 (4) (2001), pp. 409–427.

    Article  MathSciNet  Google Scholar 

  41. Hong, H. and Stahl, V.: Bernstein Form Is Inclusion Monotone, Computing 55 (1995), pp. 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  42. Hsu, C. Y. and Bruderlin, B.: Constraint Objects—Integrating Constraint Definition and Graphical Interaction, in: ACM Proceedings of the Second Symposium on Solid Modeling and Applications, 1993, Montreal, Quebec, Canada, pp. 467–468.

  43. Hu, C. Y., Maekawa, T., Patrikalakis, N. M., and Ye, X.: Robust Interval Algorithm for Surface Intersections, Computer-Aided Design 29 (9) (1997), pp. 617–627.

    Article  MATH  Google Scholar 

  44. Hu, C. Y., Patrikalakis, N. M., and Ye, X.: Robust Interval Solid Modeling, Part II: Boundary Evaluation, Computer-Aided Design 28 (10) (1996), pp. 819–830.

    Article  Google Scholar 

  45. Hungerbuhler, A. R. and Garloff, B. J.: Bounds for the Range of a Bivariate Polynomial over a Triangle, Reliable Computing 4 (1) (1998), pp. 3–13.

    Article  MathSciNet  Google Scholar 

  46. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, Springer, London, 2001.

    MATH  Google Scholar 

  47. Kalra, D. and Barr, A. H.: Guaranteed Ray Intersections with Implicit Surfaces, Computer Graphics 23 (3) (1989), pp. 297–304.

    Article  Google Scholar 

  48. Kaucher, E.: Interval Analysis in the Extended Interval Space IR, Computing Supplementum 2, Springer, Heidelberg, 1980, pp. 33–49.

    Google Scholar 

  49. Kearfott, R. B.: On Existence and Uniqueness Verification for Non-Smooth Functions, Reliable Computing 8 (4) (2002), pp. 267–282.

    Article  MATH  MathSciNet  Google Scholar 

  50. Kearfott, R. B.: Preconditioners for the Interval Gauss-Seidel Method, SIAM Journal on Numerical Analysis 27 (3) (1990), pp. 804–822.

    Article  MATH  MathSciNet  Google Scholar 

  51. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.

    MATH  Google Scholar 

  52. Kearfott, R. B. and Dian, J.: Existence Verification for Higher Degree Singular Zeros of Nonlinear Systems, SIAM Journal on Numerical Analysis 41 (6) (2003), pp. 2350–2373.

    Article  MATH  MathSciNet  Google Scholar 

  53. Kearfott, R. B., Dian, J., and Neumaier, A.: ExistenceVerification for Singular Zeros of Complex Nonlinear Systems, SIAM Journal on Numerical Analysis 38 (2) (2000), pp. 360–379.

    Article  MATH  MathSciNet  Google Scholar 

  54. Kearfott, R. B. and Walster, G. W.: Symbolic Preconditioning with Taylor Models: Some Examples, Reliable Computing 8 (6) (2002), pp. 453–468.

    Article  MATH  MathSciNet  Google Scholar 

  55. Kolev, L. V.: A New Method for Global Solution of Systems of Non-Linear Equations, Reliable Computing 4 (2) (1998), pp. 125–146.

    Article  MATH  MathSciNet  Google Scholar 

  56. Kolev, L. V.: An Improved Method for Global Solution of Non-Linear Systems, Reliable Computing 5 (2) (1999), pp. 103–111.

    Article  MATH  MathSciNet  Google Scholar 

  57. Kolev, L. V.: Automatic Computation of a Linear Interval Enclosure, Reliable Computing 7 (1) (2001), pp. 17–28.

    Article  MATH  MathSciNet  Google Scholar 

  58. Kolev, L.: Use of Interval Slopes for the Irrational Part of Factorable Functions, Reliable Computing 3 (1) (1997), pp. 83–93.

    Article  MATH  MathSciNet  Google Scholar 

  59. Kolev, L. V. and Nenov, I.: Cheap and Tight Bounds on the Solution Set of Perturbed Systems of Nonlinear Equations, Reliable Computing 7 (5) (2001), pp. 399–408.

    Article  MATH  MathSciNet  Google Scholar 

  60. Kondo, K.: Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models, Computer-Aided Design 24 (3) (1992), pp. 141–147.

    Article  MATH  MathSciNet  Google Scholar 

  61. Kondo, K.: PIGMOD: Parametric and Interactive Geometric Modeller for Mechanical Design, Computer-Aided Design 22 (10) (1990), pp. 633–644.

    Article  Google Scholar 

  62. Kramer, G. A.: A Geometric Constraint Engine, in: Freuder, E. C. and Mackworth, A. K. (eds), Artificial Intelligence: Constraint-Based Reasoning 58, Elsever, 1992, pp. 327–360.

  63. Krawczyk, R.: Newton-Algorithmen zur Bestimmug von Nullstellen mit Fehlerschranken, Computing 4 (1969), pp. 187–201.

    Article  MATH  MathSciNet  Google Scholar 

  64. Krawczyk, R. and Neumaier, A.: An Improved Interval Newton Operator, Journal of Mathematical Analysis and Applications 118 (1) (1986), pp. 194–207.

    Article  MATH  MathSciNet  Google Scholar 

  65. Krawczyk, R. and Neumaier, A.: Interval Slopes for Rational Functions and Associated Centered Forms, SIAM Journal on Numerical Analysis 22 (3) (1985), pp. 604–615.

    Article  MATH  MathSciNet  Google Scholar 

  66. Lamure, H. and Michelucci, D.: Solving Geometric Constraints by Homotopy, in: Proceedings of the Third ACM Symposium on Solid Modeling and Applications, May 17–19, 1995, Salt Lake City, Utah, pp. 263–269.

  67. Latham, R. S. and Middleditch, A. E.: Connectivity Analysis: A Tool for Processing Geometric Constraints, Computer-Aided Design 28 (11) (1996), pp. 917–928.

    Article  Google Scholar 

  68. Lee, J.Y. and Kim, K.:A2-D Geometric Constraint Solver Using DOF-Based Graph Reduction, Computer-Aided Design 30 (11) (1998), pp. 883–896.

    Article  MATH  Google Scholar 

  69. Lee, J. Y. and Kim, K.: Geometric Reasoning for Knowledge-Based Parametric Design Using Graph Representation, Computer-Aided Design 28 (10) (1996), pp. 831–841.

    Article  Google Scholar 

  70. Light, R. and Gossard, D.: Modification of Geometric Models Through Variational Geometry, Computer-Aided Design 14 (4) (1982), pp. 209–214.

    Article  Google Scholar 

  71. Lin, H., Liu, L., and Wang, G.: Boundary Evaluation for Interval Bezier Curve, Computer-Aided Design 34 (9) (2002), pp. 637–646.

    Article  Google Scholar 

  72. Maekawa, T. and Patrikalakis, N. M.: Computation of Singularities and Intersections of Offsets of Planar Curves, Computer Aided Geometric Design 10 (5) (1993), pp. 407–429.

    Article  MATH  MathSciNet  Google Scholar 

  73. Maekawa, T. and Patrikalakis, N. M.: Interrogation of Differential Geometry Properties for Design and Manufacture, The Visual Computer 10 (4) (1994), pp. 216–237.

    Article  Google Scholar 

  74. Makino, K. and Berz, M.: Efficient Control of the Dependency Problem Based on Taylor Model Methods, Reliable Computing 5 (1) (1999), pp. 3–12.

    Article  MATH  MathSciNet  Google Scholar 

  75. Makino, K. and Berz, M.: Remainder Differential Algebras and Their Applications, in: Berz, M., Bischof, C., Corliss, G., and Griewank, A. (eds.), Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia pp. 63–74.

  76. Mayer, G.: Epsilon-Infiation in Verification Algorithms, Journal of Computational and Applied Mathematics 60 (1–2) (1995), pp. 147–169.

    Article  MATH  MathSciNet  Google Scholar 

  77. Modares, M., Mullen, R., Muhanna, R. L., and Zhang, H.: Buckling Analysis of Structures with Uncertain Properties and Loads Using an Interval Finite Element Method, in: Muhanna, R. L. and Mullen, R. L. (eds), Proceedings of the 2004 NSF Workshop on Reliable Engineering Computing, September 15–17, 2004, Savannah, GA, USA, pp. 317–327.

  78. Moore, M. and Wilhelms, J.: Collision Detection and Response for Computer Animation, Computer Graphics 22 (4) (1988), pp. 289–298.

    Article  Google Scholar 

  79. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  80. Moore, R. E. (ed.): Reliability in Computing: The Role of Interval Methods in Scientific Computing, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  81. Moore, R. E.: Sparse Systems in Fixed Point Form, Reliable Computing 8 (4) (2002), pp. 249–265.

    Article  MATH  MathSciNet  Google Scholar 

  82. Moore, R. E. and Qi, L.: A Successive Interval Test for Nonlinear Systems, SIAM Journal on Numerical Analysis 19 (4) (1982), pp. 845–850.

    Article  MATH  MathSciNet  Google Scholar 

  83. Mudur, S. P. and Koparkar, P. A.: Interval Methods for Processing Geometric Objects, IEEE Computer Graphics and Applications 4 (2) (1984), pp. 7–17.

    Article  Google Scholar 

  84. Muhanna, R. L. and Mullen, R. L.: Formulation of Fuzzy Finite-Element Methods for Solid Mechanics Problems, Computer-Aided Civil and Infrastructure Engineering 14 (1999), pp. 107–117.

    Article  Google Scholar 

  85. Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems—Interval-Based Approach, ASCE Journal of Engineering Mechanics 127 (6) (2001), pp. 557–566.

    Article  Google Scholar 

  86. Muhanna, R. L., Mullen, R. L., and Zhang, H.: Interval Finite Element as a Basis for Generalized Models of Uncertainty in Engineering Mechanics, in: Muhanna, R. L. and Mullen, R. L. (eds), Proceedings of the 2004 NSFWorkshop on Reliable Engineering Computing, September 15–17, 2004, Savannah, GA, USA, pp. 353–370.

  87. Mullineux, G: Constraint Resolution Using Optimisation Techniques, Computers & Graphics 25 (3) (2001), pp. 483–492.

    Article  Google Scholar 

  88. Neumaier, A.: A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott Enclosure for Linear Interval Equations, Reliable Computing 5 (2) (1999), pp. 131–136.

    Article  MATH  MathSciNet  Google Scholar 

  89. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.

  90. Neumaier, A.: On Shary's Algebraic Approach for Linear Interval Equations, SIAM Journal on Matrix Analysis and Applications 21 (4) (2000), pp. 1156–1162.

    Article  MATH  MathSciNet  Google Scholar 

  91. Neumaier, A.: Taylor Forms – Use and Limits, Reliable Computing 9 (1) (2003), pp. 43–79.

    Article  MATH  MathSciNet  Google Scholar 

  92. Ning, S. and Kearfott, R. B.: A Comparison of Some Methods for Solving Linear Interval Equations, SIAM Journal on Numerical Analysis 34 (4) (1997), pp. 1289–1305.

    Article  MATH  MathSciNet  Google Scholar 

  93. Owen, J. C.: Algebraic Solution for Geometry from Dimensional Constraints, in: ACM Proceedings of the First Symposium on Solid Modeling Foundations and CAD/CAM Applications, 1991, Austin, Texas, pp. 397–407.

  94. Perez, A. and Serrano, D.: Constraint Based Analysis Tools for Design, in: ACM Proceedings on the 2nd Symposium on Solid Modeling and Applications, 1993, Montreal, Quebec, Canada, pp. 281–291.

  95. Rao, S. S. and Berke, L.: Analysis of Uncertain Structural Systems Using Interval Analysis, AIAA Journal 35 (4) (1997), pp. 727–735.

    Article  MATH  Google Scholar 

  96. Rao, S. S. and Cao, L.: Optimum Design of Mechanical Systems Involving Interval Parameters, ASME Journal of Mechanical Design 124 (2002), pp. 465–472.

    Article  Google Scholar 

  97. Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions, Ellis Horwood, Chichester, 1984, Ch. 6.

    MATH  Google Scholar 

  98. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization, Ellis Horwood, New York, 1988.

    MATH  Google Scholar 

  99. Rohn, J.: Cheap and Tight Bounds: the Recent Result by E. Hansen Can Be Made More Efficient, Interval Computations 4 (1993), pp. 13–21.

    MathSciNet  Google Scholar 

  100. Rokne, J. G.: A Note on the Bernstein Algorithm for Bounds for Interval Polynomials, Computing 21 (1979), pp. 159–170.

    Article  MATH  MathSciNet  Google Scholar 

  101. Roller, D.: An Approach to Computer-Aided Parametric Design, Computer-Aided Design 23 (5) (1991), pp. 385–391.

    Article  MATH  Google Scholar 

  102. Rump, S. M.: A Note on Epsilon-Infiation, Reliable Computing 4 (4) (1998), pp. 371–375.

    Article  MATH  MathSciNet  Google Scholar 

  103. Rump, S. M.: Inclusion of Zeros of Nowhere Differentiable n-Dimensional Functions, Reliable Computing 3 (1) (1997), pp. 5–16.

    Article  MATH  MathSciNet  Google Scholar 

  104. Sederberg, T.W. and Farouki, R. T.: Approximation by Interval Bezier Curves, IEEE Computer Graphics and Applications 12 (5) (1992), pp. 87–95.

    Article  Google Scholar 

  105. Shary, S. P.: A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity, Reliable Computing 8 (5) (2002), pp. 321–418.

    Article  MATH  MathSciNet  Google Scholar 

  106. Shary, S. P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations, Reliable Computing 3 (2) (1997), pp. 103–135.

    Article  MATH  MathSciNet  Google Scholar 

  107. Snyder, J.: Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design Using Interval Analysis, Academic Press, Cambridge, 1992.

    MATH  Google Scholar 

  108. Snyder, J. M., Woodbury, A. R., Fleischer, K., Currin, B., and Barr, A. H.: Interval Methods for Multi-Point Collisions Between Time-Dependant Curved Surfaces, in: ACMProceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, New York, 1993, pp. 321–334.

  109. Solano, L. and Brunet, P.: Constructive Constraint-Based Model for Parametric CAD Systems, Computer-Aided Design 26 (8) (1994), pp. 614–621.

    Article  MATH  Google Scholar 

  110. Stahl, V., Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations, unpublished Ph.D. thesis, University of Linz, 1995.

  111. Sunde, G.: Specification of Shape by Dimensions and Other Geometric Constraints, in: Wozny, M. J., McLaughlin, H. W., and Encarnacao, J. L. (eds), Geometric Modeling for CAD Applications, IFIP WG 5.2 Working Conference on Geometric Modeling for CAD Applications, May 12–16, 1986, Rensselaerville, New York, North-Holland, Amsterdam, 1988, pp. 199–213.

    Google Scholar 

  112. Toth, D. L.: On Ray Tracing Parametric Surfaces, Computer Graphics 19 (3) (1985), pp. 171–179.

    Article  Google Scholar 

  113. Tuohy, S. T., Maekawa, T., Shen, G., and Patrikalakis, N. M.: Approximation of Measured Data with Interval B-Splines, Computer-Aided Design 29 (11) (1997), pp. 791–799.

    Article  Google Scholar 

  114. Von Herzen, B., Barr, A. H., and Zatz, H. R.: Geometric Collisions for Time-Dependent Parametric Surfaces, Computer Graphics 24 (4) (1990), pp. 39–48.

    Article  Google Scholar 

  115. Wallner, J., Krasauskas, R., and Pottmann, H.: Error Propagation in Geometric Constructions, Computer-Aided Design 32 (11) (2000), pp. 631–641.

    Article  Google Scholar 

  116. Wolfe, M. A.: A Modification of Krawczyk's Algorithm, SIAM Journal on Numerical Analysis 17 (3) (1980), pp. 376–379.

    Article  MATH  MathSciNet  Google Scholar 

  117. Wolfe, M. A.: On Bounding Solutions of Underdetermined Systems, Reliable Computing 7 (3) (2001), pp. 195–207.

    Article  MATH  MathSciNet  Google Scholar 

  118. Yamaguchi, Y. and Kimura, F.: A Constraint Modeling System for Variational Geometry, in: Wozny, M. J., Turner, J. U., and Preiss, K. (eds), Geometric Modeling for Product Engineering, IFIP WG 5.2/NSF Working Conference on Geometric Modeling, September 18–22, 1988, Rensselaerville, New York, North-Holland, Amsterdam, 1990, pp. 221–233.

    Google Scholar 

  119. Yamamura, K.: An Algorithm for Representing Functions of Many Variables by Superpositions of Functions of One Variable and Addition, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Application 43 (4) (1996), pp. 338–340.

    Article  MathSciNet  Google Scholar 

  120. Zhang, D., Li, W., and Shen, Z.: Solving Underdetermined Systems with Interval Methods, Reliable Computing 5 (1) (1999), pp. 23–33.

    Article  MATH  MathSciNet  Google Scholar 

  121. Zuhe, S. and Wolfe, M. A.: On Interval Enclosures Using Slope Arithmetic, Applied Mathematics and Computation 39 (1) (1990), pp. 89–105.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Nnaji, B.O. Solving Interval Constraints by Linearization in Computer-Aided Design. Reliable Comput 13, 211–244 (2007). https://doi.org/10.1007/s11155-006-9023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9023-4

Keywords

Navigation