Skip to main content
Log in

A Search Algorithm for Calculating Validated Reliability Bounds

  • Published:
Reliable Computing

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The search algorithm presented allows the CDF of a dependent variable to be bounded with 100% confidence, and allows for a guaranteed evaluation of the error involved. These reliability bounds are often enough to make decisions, and often require a minimal number of function evaluations. The procedure is not intrusive, i.e. it can be equally applied when the function is a complex computer model (black box). The proposed procedure can handle input information consisting of probabilistic, interval-valued, set-valued, or random-set-valued information, as well as any combination thereof. The function as well as the joint pdf of the input variables can be of any type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang, A. H.-S. and Tang, W. H.: Probability Concepts in Engineering Planning and Design, Vol. 1, Wiley, New York, 1975.

    Google Scholar 

  2. Ang, A. H.-S. and Tang, W. H.: Probability Concepts in Engineering Planning and Design, Vol. 2, Wiley, New York, 1984.

    Google Scholar 

  3. Bae, H.-R., Grandhi, R. V., and Canfield, R. A.: An Approximation Approach for Uncertainty Quantification Using Evidence Theory, Reliability Engineering and System Safety 86 (2004), pp. 215–225.

    Article  Google Scholar 

  4. Berleant, D.: Automatically Verified Arithmetic on Probability Distributions and Intervals, in: Kearfott, R. B. and Kreinovich, V. (eds), Applications of Interval Computations, Kluwer Academic Publishers, Dordrecht, 1996, Chapter 10, pp. 227–244.

    Google Scholar 

  5. Berleant, D.: Automatically Verified Reasoning with Both Intervals and Probability Density Functions, Interval Computations 2 (1993), pp. 48–70.

    MathSciNet  Google Scholar 

  6. Berleant, D. and Cheng, H.: A Software Tool for Automatically Verified Operations on Intervals and Probability Distributions, Reliable Computing 4 (1) (1998), pp. 71–82.

    Article  MATH  Google Scholar 

  7. Berleant, D. and Goodman-Strauss, C.: Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals, Reliable Computing 4 (2) (1998), pp. 147–165.

    Article  MATH  MathSciNet  Google Scholar 

  8. Berleant, D., Xie, L., and Zhang, J.: Statool: A Tool for Distribution Envelope Determination (DEnv), an Interval-Based Algorithm for Arithmetic on Random Variables, Reliable Computing 9 (2) (2003), pp. 91–108.

    Article  MATH  Google Scholar 

  9. Craig, P. S., Goldstein, M., Rougier, J., and Seheult, A. H.: Bayesian Forecasting for Complex Systems Using Computer Simulators, J. American Statis. Assn. 96 (454) (2001), pp. 717–729.

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis, P. J. and Rabinowitz, P.: Methods of Numerical Integration, Second Edition, Academic Press, London, 1984.

    MATH  Google Scholar 

  11. Ditlevsen, O. and Madsen, H. O.: Structural Reliability Methods, John Wiley & Sons, Chichester, 1996.

    Google Scholar 

  12. Dubois, D. and Prade, H.: Random Sets and Fuzzy Interval Analysis, Fuzzy Sets and Systems 42 (1991), pp. 87–101.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferson, S.: RAMAS Rick Calc 4.0: Risk Assessment with Uncertain Numbers, Lewis Press, Boca Raton, 2002.

    Google Scholar 

  14. Ferson, S.: What Monte Carlo Methods Cannot Do, Journal of Human and Ecological Risk Assessment 2 (1996), pp. 990–1007.

    Google Scholar 

  15. Hansen, E. R. and Walster, W. G.: Global Optimization Using Interval Analysis, Second Edition, Marcel Dekker, New York, 2003.

    Google Scholar 

  16. Heidelberger, P.: Fast Simulation of Rare Events in Queuing and Reliability Models, ACM Transactions on Modeling and Computer Simulation 5 (1995), pp. 43–85.

    Article  MATH  Google Scholar 

  17. Kearfott, R. B.: COCOS'02: A Workshop on Global Constrained Optimization and Constraint Satisfaction, Reliable Computing 9 (1) (2003), pp. 81–87.

    Article  Google Scholar 

  18. Kennedy, M. C. and O'Hagan, A.: Bayesian Calibration of Computer Models, J. R. Statistical Soc B 63 (3) (2001), pp. 425–464 (with discussion).

    Article  MATH  MathSciNet  Google Scholar 

  19. Lodwick, W. A. and Jamison, K. D.: Estimating and Validating the Cumulative Distribution of a Function of Random Variables: Toward the Development of Distribution Arithmetic, Reliable Computing 9 (2) (2003), pp. 127–141.

    Article  MATH  MathSciNet  Google Scholar 

  20. Melchers, R. E.: Structural Reliability Analysis and Prediction, Second Edition, John Wiley & Sons, Chichester, 1999.

    Google Scholar 

  21. Modares, M. and Mullen, R. L.: Free Vibration of Structures with Interval Uncertainty, in: Wojtkiewicz, S., Chanem, R., and Red-Horse, J. (eds), Proc. 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability PMC2004, Albuquerque (NM), July 26–28, 2004, ASCE, Reston, 2004, paper 7–103.

  22. Moore, A. S.: Interval Risk Analysis of Real Estate Investment: A Non-Monte Carlo Approach, Freiburger Interval-Berichte 85 (3) (1985), pp. 23–49.

    Google Scholar 

  23. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  24. Moore, R. E.: Risk Analysis without Monte Carlo Methods, Freiburger Interval-Berichte 84 (1) (1984), pp. 1–44.

    Google Scholar 

  25. Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems—Interval-Based Approach, Journal of Engineering Mechanics, ASCE, 127 (6) (2001), pp. 557–566.

    Article  Google Scholar 

  26. Muhanna, R. L., Mullen, R. L., and Zhang, H.: Penalty-Based Solution for the Interval Finite- Element Methods, Journal of Engineering Mechanics 131 (2005), pp. 1102–1111.

    Article  Google Scholar 

  27. Oakley, J. and O'Hagan, A.: Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs, Biometrika 89 (4) (2002), pp. 769–784.

    Article  Google Scholar 

  28. Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions, Ellis Horwood, Chirchester, 1984.

    MATH  Google Scholar 

  29. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization, Ellis Horwood, Chirchester, 1988.

    MATH  Google Scholar 

  30. Sloan, I.H. and Wozniakowski, H.: When Does Monte Carlo Depend Polynomially on the Number of Variables?, Applied Mathematics Report AMR03/1, Department of Applied Mathematics, The University of South Wales, Sidney, 2003.

  31. Tonon, F.: On the Use of Random Set Theory to Bracket the Results of Monte Carlo Simulations, Reliable Computing 10 (2) (2004), pp. 107–137.

    Article  MATH  MathSciNet  Google Scholar 

  32. Tonon, F., Bernardini, A., and Mammino, A.: Determination of Parameters Range in Rock Engineering by Means of Random Set Theory, Reliability Engineering & System Safety 70 (3) (2000), pp. 241–261.

    Article  Google Scholar 

  33. Tuy, H.: Convex Analysis and Global Optimization, Kluwer Academic Publishers, Dordrecht, 1998.

    MATH  Google Scholar 

  34. Wang, L. P. and Grandhi, R. V.: Improved Two-Point Function Approximations for Design Optimization, AIAA Journal 33 (9) (1995), pp. 1720–1727.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Tonon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonon, F. A Search Algorithm for Calculating Validated Reliability Bounds. Reliable Comput 13, 195–209 (2007). https://doi.org/10.1007/s11155-006-9025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9025-2

Keywords

Navigation