Skip to main content
Log in

Computing Population Variance and Entropy under Interval Uncertainty: Linear-Time Algorithms

  • Published:
Reliable Computing

Abstract

In statistical analysis of measurement results it is often necessary to compute the range \([\underline V ,\,\overline V]\) of the population variance \(V = \frac{1}{n}\, \cdot \,\sum\limits_{i = 1}^n (x_i \, - \,E)^2 \,\left({\rm where}\,E = \frac{1}{n}\, \cdot \,\sum\limits_{i = 1}^n {x_i }\,\right)\) when we only know the intervals \([\tilde x_i - \Delta _i,\,\tilde x_i \, + \,\Delta _i]\) of possible values of the x i . While \(\underline {V}\) can be computed efficiently, the problem of computing \(\overline {V}\) is, in general, NP-hard. In our previous paper “Population Variance under Interval Uncertainty: A New Algorithm” (Reliable Computing 12 (4) (2006), pp. 273–280) we showed that in a practically important case we can use constraints techniques to compute \(\overline {V}\) in time O(n · log(n)). In this paper we provide new algorithms that compute \(\underline {V}\) (in all cases) and \(\overline {V}\) (for the above case) in linear time O(n).

Similar linear-time algorithms are described for computing the range of the entropy \(S = - \sum\limits_{i = 1}^n {p_i\,\cdot\,{\rm log} (p_i )}\) when we only know the intervals \({\bf P}_i \, = \,[p_{-i},\,\bar p_i]\) of possible values of probabilities p i .

In general, a statistical characteristic ƒ can be more complex so that even computing ƒ can take much longer than linear time. For such ƒ, the question is how to compute the range \([\underline y,\,\overline y]\) in as few calls to ƒ as possible. We show that for convex symmetric functions ƒ, we can compute \(\bar {y}\) in n calls to ƒ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berberian S. (1974) Lectures in Functional Analysis and Operator Theory. Springer, New York, Heidelberg, Berlin

    MATH  Google Scholar 

  2. Boyd, S. and Vandenberghe, L.: Convex Optimization, Cambridge University Press, 2004.

  3. van der Broek, P. and Noppen, J.: Fuzzy Weighted Average: Alternative Approach, in: Proceedings of the 25th International Conference of the North American Fuzzy Information Processing Society NAFIPS’2006, Montreal, Quebec, Canada, June 3–6, 2006.

  4. Cormen Th.H., Leiserson C.E., Rivest R.L., Stein C. (2001) Introduction to Algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  5. Dantsin E., Kreinovich V., Wolpert A., Xiang G. (2006) Population Variance under Interval Uncertainty: A New Algorithm. Reliable Computing 12(4):273–280

    Article  MATH  MathSciNet  Google Scholar 

  6. Dantsin, E., Wolpert, A., Ceberio, M., Xiang, G., and Kreinovich, V.: Detecting Outliers under Interval Uncertainty: A New Algorithm Based on Constraint Satisfaction, in: Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’06, Paris, France, July 2–7, 2006, pp. 802–809.

  7. Ferson S., Ginzburg L., Kreinovich V., Longpré L., Aviles M. (2005) Exact Bounds on Finite Populations of Interval Data. Reliable Computing 11(3):207–233

    Article  MATH  MathSciNet  Google Scholar 

  8. Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W., and Ginzburg, L.: Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty, Sandia National Laboratories, Report SAND2007-0939, 2007.

  9. Hansen P., de Aragao M.V.P., Ribeiro C.C. (1991) Hyperbolic 0-1 Programming and Optimization in Information Retrieval. Math. Programming 52:255–263

    Article  MATH  MathSciNet  Google Scholar 

  10. Jaulin L., Kieffer M., Didrit O., Walter E. (2001) Applied Interval Analysis: with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer Verlag, London

    MATH  Google Scholar 

  11. Klir G.J. (2005) Uncertainty and Information: Foundations of Generalized Information Theory. J. Wiley, Hoboken, New Jersey

    Google Scholar 

  12. Kreinovich V. (1996) Maximum Entropy and Interval Computations. Reliable Computing 2(1):63–79

    Article  MATH  MathSciNet  Google Scholar 

  13. Kreinovich V., Longpré L., Patangay P., Ferson S., Ginzburg L. (2005) Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational Complexity. Reliable Computing 11(1):59–76

    Article  MATH  MathSciNet  Google Scholar 

  14. Kreinovich V., Xiang G., Starks S.A., Longpré L., Ceberio M., Araiza R., Beck J., Kandathi R., Nayak A., Torres R., Hajagos J. (2006) Towards Combining Probabilistic and Interval Uncertainty in Engineering Calculations: Algorithms for Computing Statistics under Interval Uncertainty, and Their Computational Complexity. Reliable Computing 12(6):471–501

    Article  MATH  MathSciNet  Google Scholar 

  15. Nivlet, P., Fournier, F., and Royer, J.: A New Methodology to Account for Uncertainties in 4-D Seismic Interpretation, in: Proc. 71st Annual Int’l Meeting of Soc. of Exploratory Geophysics SEG’2001, San Antonio, September 9–14, 2001, pp. 1644–1647.

  16. Nivlet, P., Fournier, F., and Royer, J.: Propagating Interval Uncertainties in Supervised Pattern Recognition for Reservoir Characterization, in: Proc. 2001 Society of Petroleum Engineers Annual Conf. SPE’2001, New Orleans, September 30–October 3, 2001, paper SPE-71327.

  17. Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics, New York, 1993.

  18. Roberts A.W., Varberg D.E. (1973) Convex Functions. Academic Press, New York and London

    MATH  Google Scholar 

  19. Vavasis S.A. (1991) Nonlinear Optimization: Complexity Issues. Oxford Science, New York

    MATH  Google Scholar 

  20. Webster R. (1994) Convexity. Oxford University Press, Oxford, New York, Tokyo

    MATH  Google Scholar 

  21. Xiang, G., Kosheleva, O., and Klir, G. J.: Estimating Information Amount under Interval Uncertainty: Algorithmic Solvability and Computational Complexity, in: Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’06, Paris, France, July 2–7, 2006, pp. 840–847.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, G., Ceberio, M. & Kreinovich, V. Computing Population Variance and Entropy under Interval Uncertainty: Linear-Time Algorithms. Reliable Comput 13, 467–488 (2007). https://doi.org/10.1007/s11155-007-9045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-007-9045-6

Keywords

Navigation