Skip to main content
Log in

The journal relative impact: an indicator for journal assessment

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper presents the journal relative impact (JRI), an indicator for scientific evaluation of journals. The JRI considers in its calculation the different culture of citations presented by the Web of Science subject categories. The JRI is calculated considering a variable citation window. This citation window is defined taking into account the time required by each subject category for the maturation of citations. The type of document considered in each subject category depends on its outputs in relation to the citations. The scientific performance of each journal in relation to each subject category that it belongs to is considered allowing the comparison of the scientific performance of journals from different fields. The results obtained show that the JRI can be used for the assessment of the scientific performance of a given journal and that the SJR and SNIP should be used to complement the information provided by the JRI. The JRI presents good features as stability over time and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bergstrom, C. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. C&RL News, 68(5), 314–316.

    Google Scholar 

  • Bollen, J., Rodriguez, M. A., & Van De Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.

    Article  Google Scholar 

  • Bollen, J., & van de Sompel, H. (2008). Usage impact factor: The effects of sample characteristics on usage-based impact metrics. Journal of the American Society for Information Science and Technology, 59(1), 136–149. doi:10.1002/asi.20746.

    Article  Google Scholar 

  • Garfield, E., & Sher, I. H. (1963). New factors in evaluation of scientific literature through citation indexing. American Documentation, 14(3), 195.

    Article  Google Scholar 

  • Gavel, Y., & Iselid, L. (2008). Web of Science and Scopus: A journal title overlap study. Online Information Review, 32(1), 8–21. doi:10.1108/14684520810865958.

    Article  Google Scholar 

  • Glanzel, W., & Schoepflin, U. (1995). A bibliometric study on aging and reception processes of scientific literature. Journal of Information Science, 21(1), 37–53.

    Article  Google Scholar 

  • Gonzalez-Pereira, B., Guerrero-Bote, V. P., & Moya-Anegon, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379–391. doi:10.1016/j.joi.2010.03.002.

    Article  Google Scholar 

  • Jacso, P. (2005). As we may search–comparison of major features of the Web of Science, Scopus, and Google scholar citation-based and citation-enhanced databases. Current Science, 89(9), 1537–1547.

    Google Scholar 

  • Kyvik, S. (2003). Changing trends in publishing behaviour among university faculty, 1980–2000. Scientometrics, 58(1), 35–48.

    Article  Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319. doi:10.1002/asi.20614.

    Article  Google Scholar 

  • Lisee, C., Lariviere, V., & Archambault, E. (2008). Conference proceedings as a source of scientific information: A bibliometric analysis. Journal of the American Society for Information Science and Technology, 59(11), 1776–1784. doi:10.1002/asi.20888.

    Article  Google Scholar 

  • Lloyd, E. (1984).Handbook of applicable mathematics vol. VI, Part B. Statistics (1st ed.). New York: John Wiley & Sons.

  • Lopez-Illescas, C., de Moya-Anegon, F., & Moed, H. F. (2008). Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of Informetrics, 2(4), 304–316. doi:10.1016/j.joi.2008.08.001.

    Article  Google Scholar 

  • Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265–277. doi:10.1016/j.joi.2010.01.002.

    Article  Google Scholar 

  • Moed, H. F., Van Leeuwen, T. N., & Reedijk, J. (1998). A new classification system to describe the ageing of scientific journals and their impact factors. Journal of Documentation, 54(4), 387–419.

    Article  Google Scholar 

  • Moed, H. F., & Visser, M. S. (2007). Developing bibliometric indicators of research performance in computer science: An exploratory study. Research Report to the Council for Physical Sciences of the Netherlands Organisation for Scientific Research. Hague: Netherlands Organisation for Scientific Research.

  • Murugesan, P., & Moravcsik, M. J. (1978). Variation of nature of citation measures with journals and scientific specialties. Journal of the American Society for Information Science, 29(3), 141–147.

    Article  Google Scholar 

  • Nederhof, A. J. (2005). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics, 66(1), 81–100. doi:10.1007/s11192-006-0007-2.

    Article  MathSciNet  Google Scholar 

  • Opthof, T., & Leydesdorff, L. (2010). Caveats for the journal and field normalizations in the cwts (“leiden”) evaluations of research performance. Journal of Informetrics, 4(3), 423–430.

    Article  Google Scholar 

  • Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications–theory, with application to literature of physics. Information Processing & Management, 12(5), 297–312.

    Article  Google Scholar 

  • Shepherd, P. T. (2010). The feasibility of developing and implementing journal usage factors: A research project sponsored by UKSG. The Journal of Serials Community, 20, 117–123.

    Article  Google Scholar 

  • Small, H., & Sweeney, E. (1985). Clustering the science citation index using co-citations. 1. A comparison of methods. Scientometrics, 7(3–6), 391–409.

    Article  Google Scholar 

  • Sombatsompop, N., Markpin, T., Yochai, W., & Saechiew, M. (2005). An evaluation of research performance for different subject categories using impact factor point average (IFPA) index: Thailand case study. Scientometrics, 65(3), 293–305. doi:10.1007/s11192-005-0275-2.

    Article  Google Scholar 

  • Van Leeuwen, T. N., & Moed, H. F. (2002). Development and application of journal impact measures in the Dutch science system. Scientometrics, 53(2), 249–266.

    Article  Google Scholar 

  • Vieira, E. S., & Gomes, J. A. N. F. (2010). Citations to scientific articles: Its distribution and dependence on the article features. Journal of Informetrics, 4(1), 1–13. doi:10.1016/j.joi.2009.06.002.

    Article  Google Scholar 

  • Zitt, M., & Small, H. (2008). Modifying the journal impact factor by fractional citation weighting: The audience factor. Journal of the American Society for Information Science and Technology, 59(11), 1856–1860. doi:10.1002/asi.20880.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. N. F. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, E.S., Gomes, J.A.N.F. The journal relative impact: an indicator for journal assessment. Scientometrics 89, 631–651 (2011). https://doi.org/10.1007/s11192-011-0469-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0469-8

Keywords

Navigation