Abstract
In this article, we propose mapping and visualizing the core of scientific domains using social network analysis techniques derived from mathematical graph theory. In particular, the concept of Network of the Core is introduced which can be employed to visualize scientific domains by constructing a network among theoretical constructs, models, and concepts. A Network of the Core can be used to reveal hidden properties and structures of a research domain such as connectedness, centrality, density, structural equivalence, and cohesion, by modeling the casual relationship among theoretical constructs. Network of the Core concept can be used to explore the strengths and limitations of a research domain, and graphically and mathematically derive the number research hypotheses. The Network of the Core approach can be applied to any domain given that the investigator has a deep understanding of the area under consideration, a graphical or conceptual view (in the form of a network of association among the theoretical constructs and concepts) of the scientific domain can be obtained, and an underlying theory is available or can be constructed to support Network of the Core formation. Future research directions and several other issues related to the Network of the Core concept are also discussed.






Similar content being viewed by others
References
Bell, D. (1979). The social framework of the information society. In M. L. Dertouzos & J. Moses (Eds.), The computer age: A twenty-year view (pp. 163–211). Cambridge, MA: MIT Press.
Biggs, N., Lloyd, E., & Wilson, R. (1986). Graph theory 1736–1936. Oxford: Oxford University Press.
Blatt, E. (2009). Differentiating, describing, and visualizing scientific space: A novel approach to the analysis of published scientific abstracts. Scientometrics, 80(2), 385–406. doi:10.1007/s11192-008-2070-3.
Boland, L. A. (1989). The methodology of economic model building. London: Routledge.
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203–219.
Castells, M. (1996). The rise of the network society, the information age: Economy, society and culture (Vol. 1). New York: Wiley.
Chen, C. (2003). Visualizing scientific paradigms: An introduction. Journal of the American Society for Information Science and Technology, 54(5), 392–393. doi:10.1002/asi.10224.
Chen, C., Paul, R. J., & O’Keefe, B. (2001). Fitting the jigsaw of citation: Information visualization in domain analysis. Journal of the American Society for Information Science and Technology, 52(4), 315–330. doi:10.1002/1532-2890(2000)9999:9999<:aid-asi1074>3.0.co;2-2.
Davis, F. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13, 319–340.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95.
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30.
Dewan, S., & Riggins, F. J. (2005). The digital divide: Current and future research directions. Journal of the Association for Information Systems, 6(12), 298–337.
Garfield, E., Pudovkin, A. I., & Istomin, V. S. (2003). Why do we need algorithmic historiography? Journal of the American Society for Information Science and Technology, 54(5), 400–412. doi:10.1002/asi.10226.
Hanneman, R. (1988). Computer-assisted theory building: Modeling dynamic social systems. London: Sage Publications.
Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in Scientometrics. Scientometrics, 75(2), 189–202. doi:10.1007/s11192-007-1771-3.
Janssens, F., Glänzel, W., & De Moor, B. (2008). A hybrid mapping of information science. Scientometrics, 75(3), 607–631. doi:10.1007/s11192-007-2002-7.
Joo, S., & Kim, Y. (2010). Measuring relatedness between technological fields. Scientometrics, 83(2), 435–454. doi:10.1007/s11192-009-0108-9.
Khan, G. F., Moon, J., & Park, H. W. (2010). Electronic government research: Graphical-mathematical modeling. Paper presented at the 3rd conference on innovation and development, “learning from development experience”, Seoul National University, Korea.
Khan, G. F., Moon, J., & Park, H. W. (2011). Mapping and visualizing the core of scientific domains: Information system research. Paper presented at the COLLNET 2011, seventh international conference on webometrics, informetrics and scientometrics (WIS), Istanbul Bilgi University, Istanbul, Turkey. http://www.collnet.cs.bilgi.edu.tr/program/programme/.
Khan, G. F., Moon, J., Park, H. W., Swar, B., & Rho, J. (2011b). A socio-technical perspective on e-government issues in developing countries: A scientometrics approach. Scientometrics, 87(2), 267–286. doi:10.1007/s11192-010-0322-5.
Layne, K., & Lee, J. (2001). Developing fully function e-government: A four stage model. Government Information Quarterly, 18(1), 122–136.
Lee, B., & Jeong, Y.-I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3–19. doi:10.1007/s11192-007-1819-4.
Leydesdorff, L. (1998). Theories of citation? Scientometrics, 43(1), 5–25. doi:10.1007/bf02458391.
Leydesdorff, L. (2001). The challenge of scientometrics the development, measurement, and self-organization of scientific communications. Parkland, FL: Universal-Publishers.
Leydesdorff, L. (2004). Top-down decomposition of the journal citation report of the social science citation index: Graph- and factor-analytical approaches. Scientometrics, 60(2), 159–180. doi:10.1023/B:SCIE.0000027678.31097.e0.
Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319. doi:10.1002/asi.20614.
Lu, H., & Feng, Y. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511. doi:10.1007/s11192-008-2173-x.
Nagpaul, P. (2002). Visualizing cooperation networks of elite institutions in India. Scientometrics, 54(2), 213–228. doi:10.1023/a:1016036711279.
Newman, M. (2001a). The structure of scientific collaboration networks. Paper presented at the national academy of sciences of the USA.
Newman, M. E. J. (2001b). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. doi:10.1103/PhysRevE.64.016131.
Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.
Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Technical report IHMC CmapTools 2006-01 Rev 01-2008. Florida: Institute for Human and Machine Cognition. http://www.cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.
Park, H. W. (2010). Mapping the e-science landscape in South Korea using the webometrics method. Journal of Computer-Mediated Communication, 15(2), 211–229. doi:10.1111/j.1083-6101.2010.01517.x.
Park, H. W., Hong, H. D., & Leydesdorff, L. (2005). A comparison of the knowledge-based innovation systems in the economies of South Korea and the Netherlands using Triple Helix indicators. Scientometrics, 65(1), 3–27. doi:10.1007/s11192-005-0257-4.
Park, H. W., & Leydesdorff, L. (2008). Korean journals in the science citation index: What do they reveal about the intellectual structure of S & T in Korea? Scientometrics, 75(3), 439–462. doi:10.1007/s11192-007-1862-1.
Park, H. W., & Leydesdorff, L. (2009). Knowledge linkage structures in communication studies using citation analysis among communication journals. Scientometrics, 81(1), 157–175. doi:10.1007/s11192-009-2119-y.
Parsons, T., & Shils, E. A. (1962). Toward a general theory of action. New York: Harper and Row.
Perianes-Rodríguez, A., Olmeda-Gómez, C., & Moya-Anegón, F. (2010). Detecting, identifying and visualizing research groups in co-authorship networks. Scientometrics, 82(2), 307–319. doi:10.1007/s11192-009-0040-z.
Price, D. J. d. S. (1965). Networks of scientific papers. Science, 149(3683), 510–515.
Price, D. J. d. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5–6), 292–306.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.
Saebo, O., Rose, J., & Flak, L. S. (2008). The shape of eParticipation: Characterizing an emerging research area. Government Information Quarterly, 25(3), 400–428.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423. (623–656).
Su, H.-N., & Lee, P.-C. (2010). Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in technology foresight. Scientometrics, 85(1), 65–79. doi:10.1007/s11192-010-0259-8.
Swar, B. (2011). Three essays on IT outsourcing relationship management: An assessment from public sector perspective. Ph.D. dissertation, KAIST, Daejeon.
Swar, B., Moon, J., Oh, J., & Rhee, C. (2010). Determinants of relationship quality for IS/IT outsourcing success in public sector. Information Systems Frontiers, 1–19. doi:10.1007/s10796-010-9292-7.
Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1), 1–116. doi:10.2200/S00176ED1V01Y200903ICR004.
Wang, J.-C., Chiang, C.-h., & Lin, S.-W. (2010). Network structure of innovation: can brokerage or closure predict patent quality? Scientometrics, 84(3), 735–748. doi:10.1007/s11192-010-0211-y.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.
Webster, F. (1995). Theories of the information society. New York, NY: Routledge.
Wiles, L., Olds, T., & Williams, M. (2010). Evidence base, quantitation and collaboration: three novel indices for bibliometric content analysis. Scientometrics, 85(1), 317–328. doi:10.1007/s11192-010-0163-2.
Zhao, R., & Wang, J. (2011). Visualizing the research on pervasive and ubiquitous computing. Scientometrics, 86(3), 593–612. doi:10.1007/s11192-010-0283-8.
Zhao, L., & Zhang, Q. (2011). Mapping knowledge domains of Chinese digital library research output, 1994–2010. Scientometrics, 1–37. doi:10.1007/s11192-011-0428-4.
Acknowledgment
The authors acknowledge partial support from the National Research Foundation of Korea (NRF-2010-330-B00232). An early version of this article is accepted for presentation at COLLNET 2011, the Seventh International Conference on Webometrics, Informetrics, and Scientometrics (WIS), 20-23 September, 2011, Istanbul Bilgi University, Istanbul, Turkey.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khan, G.F., Moon, J. & Park, H.W. Network of the core: mapping and visualizing the core of scientific domains. Scientometrics 89, 759–779 (2011). https://doi.org/10.1007/s11192-011-0489-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-011-0489-4