Skip to main content
Log in

Time series of scientific growth in Spanish doctoral theses (1848–2009)

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This article analyses scientific growth time series using data for Spanish doctoral theses from 1848 to 2009, retrieved from national databases and an in-depth archive search. Data are classified into subseries by historical periods. The analytical techniques employed range from visual analysis of deterministic graphs to curve-fitting with exponential smoothing and AutoRegressive Integrated Moving Average models. Forecasts are made using the best model. The main finding is that Spanish output of doctoral theses appears to fit a quasi-logistic growth model in line with Price’s predictions. An additional control variable termed year-on-year General Welfare is shown to modulate scientific growth, especially in the historical period from 1899 to 1939.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The data shown in the Table 1 below include the following variables: date, number of theses and dummy variable (general welfare). All analyses were conducted using the data in Table 1.

  2. Two features characterise Spanish theses during the Ancien Regime; they had to be written in Latin and be approved (nihil obstat: ‘nothing hinders’) by the all-powerful Court of Inquisition; it was, moreover, an expensive, ceremonial and ostentatious ritual in which the newly-created doctor was forced to spend huge amounts of money on banquets, speeches, civic and religious processions and ruinous displays of generosity culminating in a bullfight.

  3. In 1877, Santiago Ramón y Cajal, who was awarded the Nobel Prize in Physiology or Medicine in 1906, submitted his thesis: Patogenia de la inflamación—Inflammation pathogeny.

  4. The Junta de Ampliación de Estudios (Scientific Studies and Research Expansion Board) was a body founded in 1907 with the aim of promoting scientific research and education in Spain, in an attempt to emulate European models. Its influence, in terms of arranging exchanges with Europe and sending scientists to Latin America, was notable. The institution was modified in 1939 with the advent of General Franco’s regime.

  5. In 1934, Severo Ochoa de Albornoz, the Spanish-born scientist and naturalised citizen of the USA, who was awarded the Nobel Prize in Physiology or Medicine in 1959, submitted his thesis: Los fenómenos químicos y energéticos de la contracción muscular en la insuficiencia adrenal experimental (Chemical and energetic phenomena of muscle contraction in experimental adrenal failure).

References

  • Abdi, H. (2007). Kendall rank correlation. In N. J. Salkind (Ed.), Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Andersen, J. P., & Hammarfelt, B. (2011). Price revisited: On the growth of dissertations in eight research fields. Scientometrics, 88(2), 371–383. doi:10.1007/s11192-011-0408-8.

    Article  Google Scholar 

  • Ben-David, J. (1991). Scientific growth: Essays on the social organization and ethos of science. Berkeley, CA: University of California Press.

    Google Scholar 

  • Bonaccorsi, A., Daraio, C., & Simar, L. (2006). Advanced indicators of productivity of universities. An application of robust nonparametric methods to Italian data. Scientometrics, 66(2), 389–410. doi:10.1007/s11192-006-0028-x.

    Article  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Box, G. E. P., & Pierce, D. A. (1970). Distribution of the autocorrelations in AutoRegressive Moving Average time series models. Journal of the American Statistical Association, 65(332), 1509–1526.

    Article  MathSciNet  MATH  Google Scholar 

  • Braun, T., & Schubert, A. (1988). World flash on basic research: Scientometrics versus socio-economic indicators. Scatter plots for 51 countries. 1970–1980. Scientometrics, 13(1), 1–9.

    Article  Google Scholar 

  • Casson, R. J., & Al-Qureshi, S. H. (2010). Scientific information, journal impact factors and editorial policy. Clinical and Experimental Ophthalmology, 38(7), 655–656.

    Article  Google Scholar 

  • Celeste, R. K., Bastos, J. L., & Faerstein, E. (2011). Trends in the investigation of social determinants of health: Selected themes and methods. Cadernos de Saude Publica, 27(1), 183–189.

    Google Scholar 

  • Chang, Y-F., Ku, Y-W., & Hsu, C-Y. (2010). Social policy study in Taiwan. An analysis of postgraduate degree theses, 1990–2008. Asia Pacific Journal of Social Work and Development, 20(1), 95–110.

    Google Scholar 

  • Chen, Y. C., Yeh, H. Y., Wu, J. C., Haschler, I., Chen, T. J., & Wetter, T. (2011). Taiwan’s National Health Insurance research database: Administrative health care database as study object in bibliometrics. Scientometrics, 86(2), 365–380. doi:10.1007/s11192-010-0289-2.

    Article  Google Scholar 

  • de Solla Price, D. J. (1978). Towards a model of science indicators. In Y. Elkana, J. Lederberg, R. K. Merton, A. Thackray, & H. Zuckerman (Eds.), The advent of science indicators (pp. 69–95). New York: Wiley.

  • de Solla Price, D. J. (1986). Little science, big science…and beyond. New York: Columbia University Press.

  • Falkenheim, J. C., & Fiegener, M. K. (2008). 2007 Records fifth consecutive annual increase in U.S. doctoral awards. Arlington, VA: National Science Foundation.

    Google Scholar 

  • Fernández-Cano, A., & Bueno, A. (1999). Synthesizing scientometric patterns in Spanish educational research. Scientometrics, 46(2), 349–367. doi:10.1007/BF02464783.

    Article  Google Scholar 

  • Fernández-Cano, A., Torralbo, M., & Vallejo, M. (2004). Reconsidering Price’s model of scientific growth: An overview. Scientometrics, 61(3), 301–321. doi:10.1023/B:SCIE.0000045112.11562.11.

    Article  Google Scholar 

  • Fernández-Cano, A., Torralbo, M., & Vallejo, M. (2008). Revisión y prospectiva de la producción española en tesis doctorales de Pedagogía (1976–2006) [Review and prospective of the Spanish production of doctoral theses in Pedagogy (1976–2006)]. Revista de Investigación Educativa, 26(1), 191–207.

    Google Scholar 

  • Guan, J. C., & Chen, K. H. (2010). Modeling macro-R&D production frontier performance: An application to Chinese province-level R&D. Scientometrics, 82(1), 165–173. doi:10.1007/s11192-009-0030-1.

    Article  Google Scholar 

  • Han, C. S., Lee, S. K., & England, M. (2010). Transition to postmodern science-related scientometric data. Scientometrics, 84(2), 391–401. doi:10.1007/s11192-009-0119-6.

    Article  Google Scholar 

  • Huang, C., Varum, C. A., & Gouveia, J. B. (2006). Scientific productivity paradox: The case of China’s S&T system. Scientometrics, 69(2), 449–473. doi:10.1007/s11192-006-0153-6.

    Article  Google Scholar 

  • Lakatos, I., & Musgrove, A. (Eds.). (1970). Criticism and the growth of knowledge. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lariviere, V., Zuccala, A., & Archambault, E. (2008). The declining scientific impact of theses: Implications for electronic thesis and dissertation repositories and graduate studies. Scientometrics, 74(1), 109–121. doi:10.1007/s11192-008-0106-3.

    Article  Google Scholar 

  • Leitner, J.-R., & Leoplod-Wilburger, U. (2011). Experiments on forecasting behavior with several sources of information. A review of literature. European Journal of Operational Research, 213(3), 459–469. doi:10.1016/j.ejor.2011.01.006.

    Article  MathSciNet  Google Scholar 

  • Leydesdorff, L., & Zhou, P. (2005). Are the contributions of China and Korea upsetting the world system of science? Scientometrics, 63(3), 617–630. doi:10.1007/s11192-005-0231-1.

    Article  Google Scholar 

  • Liang, L. M., Liu, J. W., & Rousseau, R. (2004). Name order patterns of graduate candidates and supervisors in Chinese publications: A case study of three major Chinese universities. Scientometrics, 61(1), 3–18. doi:10.1023/B:SCIE.0000037359.22151.6f.

    Article  Google Scholar 

  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of a lack of fit in time series models. Biométrica, 65(2), 297–303. doi:10.1093/biomet/65.2.29.

    Article  MATH  Google Scholar 

  • Makridakis, S., & Hibon, M. (2000). The M3-competition: Results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476. doi:10.1016/S0169-2070(00)00057-1.

    Article  Google Scholar 

  • Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting. Methods and applications. New York: Wiley.

    Google Scholar 

  • Microsoft Inc. (2010). Microsoft Excel 2007 version 12. Seattle: Microsoft Inc. Available at http://office.microsoft.com/en-us/

  • Ministerio de Educación. (2011). Tesis doctorales: TESEO. Available at https://www.educacion.es/teseo/irBusquedaAvanzada.do

  • Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics. doi:10.1016/j.joi.2010.01.002.

  • Munz, P. (1985). Our knowledge of the growth of knowledge: Popper or Wittgenstein?. London: Routledge.

    Google Scholar 

  • National Science Foundation. (2010). Science and engineering indicators: 2010. Arlington, VA: National Science Foundation. Available at http://www.nsf.gov/statistics/seind10/

  • Osuna, C., Cruz-Castro, L., & Sanz-Menéndez, L. (2011). Overturning some assumptions about the effects of evaluation systems on publication performance. Scientometrics, 86(3), 575–592. doi:10.1007/s11192-010-0312-7.

    Article  Google Scholar 

  • Poincaré, H. (2002). La ciencia y la hipótesis. Madrid, Espasa. Original French title: La science et l’hypothèse (1902). Paris: Flammarion.

    Google Scholar 

  • Popper, K. R. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge.

    Google Scholar 

  • Schmoch, U., Schubert, T., Cansen, D., Heidler, R., & von Gortz, R. (2010). How to use indicators to measure scientific performance: A balanced approach. Research Evaluation, 19(1), 2–18. doi:10.3152/095820210x492477.

    Article  Google Scholar 

  • Sharma, S., & Thomas, V. J. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483–501. doi:10.1007/s11192-007-1896-4.

    Article  Google Scholar 

  • Shelton, R. D. (2008). Relations between national research investment and publication output; Application to an American paradox. Scientometrics, 74(2), 191–205. doi:10.1007/s11192-008-0212-2.

    Article  Google Scholar 

  • SPSS Inc. & IBM Company. (2010). IBM SPSS statististic 19. Chicago: SPSS Inc. Available at http://www.spss.com

  • Sterman, J. D. (1985). The growth of knowledge: Testing a theory of scientific revolutions with a formal model. Technological Forecasting and Social Change, 28(2), 93–122. doi:10.1016/0040-1625(85)90009-5.

    Article  Google Scholar 

  • ReliaSoft Inc. (2001). Reliability growth and repairable system data analysis online referente. ReliaSoft. Available in http://www.weibull.com/relgrowthwebcontents.htm

  • Szydlowski, M., & Krawiec, A. (2009). Growth cycles of knowledge. Scientometrics, 78(1), 99–111. doi:10.1007/s11192-007-1958-7.

    Article  Google Scholar 

  • Szydlowsky, M., & Krawiec, A. (2001). Scientific cycle model with delay. Scientometrics, 52(1), 83–95. doi:10.1023/A:1012751028630.

    Article  Google Scholar 

  • Thurgood, L., Golladay, M. J., & Hill, S. T. (2006). U.S. doctorates in the 20th century. Arlington, VA: National Science Foundation. Available at http://www.nsf.gov/statistics/nsf06319/pdf/nsf06319.pdf

  • Tseng, Y. H., Lin, Y. I., Hung, W. C., & Lee, C. H. (2009). A comparison of methods for detecting hot topics. Scientometrics, 81(1), 73–90. doi:10.1007/s11192-009-1885-x.

    Article  Google Scholar 

  • Vasileiadou, E. (2009). Stabilisation operationalised: Using time series analysis to understand the dynamics of research collaboration. Journal of Informetrics, 3(1), 36–48. doi:10.1016/j.joi.2008.11.002.

    Article  Google Scholar 

  • Vico, G. (2005). New science: Principles of a new science concerning the common nature of the nations (3er rev. ed.). London: Penguin Classics. Original Italian tittle as Principi di scienza nuova d’intorno alla comune natura delle nazioni (1744).

  • Wald, A., & Wolfowitz, J. (1940). On a test whether two samples are from the same population. The Annals of Mathematical Statistics, 11(2), 147–162. doi:10.1214/aoms/1177731909.

    Article  MathSciNet  MATH  Google Scholar 

  • Weibull (2011). Life data analysis (Weibull analysis) software tool. Reliability software. Tucson, AZ: ReliaSoft Corporation. Available at: http://www.reliasoft.com/Weibull/index.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Cano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Cano, A., Torralbo, M. & Vallejo, M. Time series of scientific growth in Spanish doctoral theses (1848–2009). Scientometrics 91, 15–36 (2012). https://doi.org/10.1007/s11192-011-0572-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0572-x

Keywords

Navigation