Skip to main content
Log in

A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Given that in terms of technology novel inventions are crucial factors for companies; this article contributes to the identification of inventions of high novelty in patent data. As companies are confronted with an information overflow, and having patents reviewed by experts is a time-consuming task, we introduce a new approach to the identification of inventions of high novelty: a specific form of semantic patent analysis. Subsequent to the introduction of the concept of novelty in patents, the classical method of semantic patent analysis will be adapted to support novelty measurement. By means of a case study from the automotive industry, we corroborate that semantic patent analysis is able to outperform available methods for the identification of inventions of high novelty. Accordingly, semantic patent information possesses the potential to enhance technology monitoring while reducing both costs and uncertainty in the identification of inventions of high novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although we will focus on SAO-structures in this article, it is noteworthy to show an alternative: Word n-grams. Word n-grams can be extracted with or without regard to syntactical classes and functions. Extracting n-grams regardless to syntactical functions cause loss of syntactical information. Nevertheless, n-grams still have semantic information. n-grams take the co-occurrence of words into account and hence, highlight a relationship between these words on the content level, as they show that n words co-occur close together in a patent.

  2. For further information on Invention Machine and the Knowledgist see invention-machine.com.

  3. For detailed information about SUBARU: http://www.subaru-global.com/.

  4. For detailed information about the FVA: http://www.fva-net.de/. The FVA can be seen as the leading innovation network in the field of drive train technology in Germany. The FVA enhance the collaboration between industry and science in the field of drive train technology.

  5. In the algorithm we took into account, that several patents may have the same level of novelty. In such cases we assume that analysts read patents stepwise. Every novelty value has to be considered as one step. Hence, if an analyst reads one patent with a novelty equal 0.2, he also reads all other patents with a novelty of 0.2 independent of the relevance of the first patent he has read with a novelty equal 0.2. In some of these cases it makes no sense to report a precision value on a specific level of recall.

References

  • Achilladelis, B., Schwarzkopf, A., & Cines, M. (1987). A study of innovation in the pesticide industry: Analysis of the innovation record of an industrial sector. Research Policy, 16(2–4), 175–212.

    Article  Google Scholar 

  • Achilladelis, B., Schwarzkopf, A., & Cines, M. (1990). The dynamics of technological innovation: The case of the chemical industry. Research Policy, 19(1), 1–34.

    Article  Google Scholar 

  • Ahuja, G., & Lampert, C. M. (2001). Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6–7), 521–544.

    Article  Google Scholar 

  • An, X. Y., & Wu, Q. Q. (2011). Co-word analysis of the trends in stem cells field based on subject heading weighting. Scientometrics, 88(1), 133–144.

    Article  MathSciNet  Google Scholar 

  • Andersen, B. (1999). The hunt for S-shaped growth paths in technological innovation: A patent study. Journal of Evolutionary Economics, 9(4), 487–526.

    Article  Google Scholar 

  • Anderson, P., & Tushman, M. L. (1990). Technological discontinuities and dominant designs: A cyclical model of technological change. Administrative Science Quarterly, 35(4), 604–633.

    Article  Google Scholar 

  • Bergmann, I., Butzke, D., Walter, L., Fuerste, J. P., Moehrle, M. G., & Erdmann, V. A. (2008). Evaluating the risk of patent infringement by means of semantic patent analysis: The case of DNA-chips. R&D Management, 38(5), 550–562.

    Article  Google Scholar 

  • Buehl, A. (2010). PASW 18: Einführung in die moderne Datenanalyse (12th ed.). München: Pearson Studium.

  • Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22(1), 155–205.

    Article  Google Scholar 

  • Cascini, G., Fantechi, A., & Spinicci, E. (2004). Natural language processing of patents and technical documentation. In S. Marinai & A. Dengel (Eds.), Document analysis systems VI (pp. 89–92). Berlin: Springer.

    Google Scholar 

  • Chandy, R. K., & Tellis, G. J. (1998). Organizing for radical product innovation: The overlooked role of willingness to cannibalize. Journal of Marketing Research, 35(4), 474–487.

    Article  Google Scholar 

  • Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88(3), 863–883.

    Article  Google Scholar 

  • Christensen, C. M., & Overdorf, M. (2000). Meeting the challenge of disruptive change. Harvard Business Review, 78(2), 66–77.

    Google Scholar 

  • Dahlin, K. B., & Behrens, D. M. (2005). When is an invention really radical? Defining and measuring technological radicalness. Research Policy, 34(5), 717–737.

    Article  Google Scholar 

  • Debackere, K., Verbeek, A., Luwel, M., & Zimmermann, E. (2002). Measuring the progress and evolution in science and technology—II: The multiple uses of technometric indicators. International Journal of Management Reviews, 4(3), 213–231.

    Article  Google Scholar 

  • Egghe, L. (2000). The distribution of N-grams. Scientometrics, 47(2), 237–252.

    Article  Google Scholar 

  • Engelsman, E. C., & van Raan, A. F. J. (1994). A patent-based cartography of technology. Research Policy, 23(1), 1–26.

    Article  Google Scholar 

  • Fendt, H. (1988). Technische Trends rechtzeitig erkennen—Patentschriften gewähren Blicke hinter die Kulissen von F&E. Havard Manager, 10(4), 72–80.

    Google Scholar 

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 1, 117–132.

    Article  Google Scholar 

  • Fleming, L., Mingo, S., & Chen, D. (2007). Collaborative brokerage, generative creativity, and creative success. Administrative Science Quarterly, 52(3), 443.

    Google Scholar 

  • Fleming, L., & Sorenson, O. (2001). Technology as a complex adaptive system: Evidence from patent data. Research Policy, 30(7), 1019–1039.

    Article  Google Scholar 

  • Frietsch, R. (2007). Patente in Europa und der Triade: Strukturen und deren Veränderung. Karlsruhe: Fraunhofer Institut für System- und Innovationsforschung.

  • Gerken, J. M., Moehrle, M. G., & Walter, L. (2010a). Patents as an information source for product forecasting: Insights from a longitudinal study in the automotive industry. R&D Management Conference 2010 Proceedings. Manchester.

  • Gerken, J. M., Moehrle, M. G., & Walter, L. (2010b). Semantische Patentlandkarten zur Analyse technologischen Wandels: Eine Längsschnittstudie aus der Allradtechnik. In J. Gausemeier (Ed.). 6. Symposium für Vorausschau und Technologieplanung (pp. 325–349). Paderborn: Heinz Nixdorf Institut

  • Gerken, J. M., Walter, L., & Moehrle, M. G. (2010c). Semantische Patentlandkarten. Einsatz semantischer Patentlandkarten im Anwendungsfeld der Antriebstechnik—Eine explorative Analyse am Beispiel der Planentengetriebe. Heft Nr. 924 der Forschungsvereinigung Antriebstechnik. Frankfurt/Main: VDMA.

  • Granstrand, O. (2000). The Economics and management of intellectual property: Towards intellectual capitalism. Cheltenham: Edward Elgar.

    Google Scholar 

  • Grupp, H. (1997). Messung und Erklärung des technischen Wandels: Grundzüge einer empirischen Innovationsökonomik. Berlin: Springer.

    Book  Google Scholar 

  • Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER patent citations data file: lessons, insights and methodological tools. NBER Working Paper 8498.

  • Han, Y., & Park, Y. (2006). Patent network analysis of inter-industrial knowledge flows: The case of Korea between traditional and emerging industries. World Patent Information, 28(3), 235–247.

    Article  Google Scholar 

  • Hargadon, A., & Sutton, R. I. (1997). Technology brokering and innovation in a product development firm. Administrative Science Quarterly, 42(4), 716–749.

    Article  Google Scholar 

  • Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387–398.

    Article  Google Scholar 

  • Jaffe, A. B., & Trajtenberg, M. (1999). International knowledge flows: Evidence from patent citations. Economics of Innovation and New Technology, 8(1/2), 105–136.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.

    Article  Google Scholar 

  • Jeong, B., Lee, D., Cho, H., & Lee, J. (2008). A novel method for measuring semantic similarity for XML schema matching. Expert Systems with Applications, 34(3), 1651–1658.

    Article  Google Scholar 

  • Kangasabai, R., & Pan, H. (2008). Method of text similarity measurement. US-Patent 7,346,491 B2.

  • Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.

    Article  Google Scholar 

  • Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804–1812.

    Article  Google Scholar 

  • Knight, H. J. (2004). Patent strategy for researchers and research managers, (2nd ed.). Chichester: Wiley.

  • Kurmaniak, C. (2008). Electromagnetics comes through in the clutch. ANSYS Advantage, 2(3), 30–31.

    Google Scholar 

  • Lee, C., Jeon, J., & Park, Y. (2011). Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach. Technological Forecasting and Social Change, 78(4), 690–702.

    Article  MathSciNet  Google Scholar 

  • Lee, S., Yoon, B., Lee, C., & Park, J. (2009a). Business planning based on technological capabilities: Patent analysis for technology-driven roadmapping. Technological Forecasting and Social Change, 76(6), 769–786.

    Article  Google Scholar 

  • Lee, S., Yoon, B., & Park, Y. (2009b). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6–7), 481–497.

    Article  Google Scholar 

  • Li, Y., Wang, L., & Hong, C. (2009). Extracting the significant-rare keywords for patent analysis. Expert Systems with Applications, 36(3), 5200–5204.

    Article  Google Scholar 

  • Lichtenthaler, E. (2004). Technological change and the technology intelligence process: A case study. Journal of Engineering and Technology Management, 21(4), 331–348.

    Article  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1), 50–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Manning, C. D., & Schütze, H. (2005). Foundations of statistical natural language processing. Cambridge: MIT Press.

    Google Scholar 

  • Moehrle, M. G. (2010). Measures for textual patent similarities: A guided way to select appropriate approaches. Scientometrics, 85(1), 95–109.

    Article  Google Scholar 

  • Moehrle, M. G., & Geritz, A. (2007). Developing acquisition strategies based on patent maps. In T. Khalil & Y. Hosni (Eds.), Management of technology: New directions in technology management (pp. 19–29). Oxford: Elsevier.

    Google Scholar 

  • Moehrle, M. G., Walter, L., Geritz, A., & Müller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R&D Management, 35(5), 513–524.

    Article  Google Scholar 

  • Naunheimer, H., Novak, W., & Ryborz, J. (2007). Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion. Berlin: Springer.

    Google Scholar 

  • Park, H., Yoon, J., & Kim, K. (2011). Identifying patent infringement using SAO based semantic technological similarities. Scientometrics, 90(2), 515–529.

    Article  Google Scholar 

  • Park, Y., Yoon, B., & Lee, S. (2005). The idiosyncrasy and dynamism of technological innovation across industries: Patent citation analysis. Technology in Society, 27(4), 471–485.

    Article  Google Scholar 

  • Pope, B. (2009). All-wheel-drive suppliers get grip on changing market. Resource document. Accessed March 8, 2010 http://wardsauto.com/ar/suppliers_grip_market_090427/.

  • Princeton University. (2006). WordNet 3.0. Resource document. Accessed March 23, 2011, from http://wordnetweb.princeton.edu/perl/webwn.

  • Reitzig, M. (2003a). What do patent indicators really measure? A structural test of ‘novelty’ and ‘inventive step’ as determinants of patent profitability. LEFIC Working paper 20031. Copenhagen, DK.

  • Reitzig, M. (2003b). What determines patent value? Insights from the semiconductor industry. Research Policy, 32(1), 13–26.

    Article  Google Scholar 

  • Rost, K. (2010). The strength of strong ties in the creation of innovation. Research Policy. doi:10.1016/j.respol.2010.12.001.

  • Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research Policy, 39(8), 1051–1059.

    Article  Google Scholar 

  • Schumpeter, J. A. (1934). The theory of economic development: an inquiry into profits, capital, credit, interest, and the business cycle. Cambridge: Harvard University Press.

    Google Scholar 

  • Sood, A., & Tellis, G. J. (2005). Technological evolution and radical innovation. Journal of Marketing, 69(3), 152–168.

    Article  Google Scholar 

  • Sternitzke, C., & Bergmann, I. (2009). Similarity measures for document mapping: A comparative study on the level of an individual scientist. Scientometrics, 78(1), 113–130.

    Article  Google Scholar 

  • Stock, W. G. (2007). Information retrieval: Informationen suchen und finden. München: Oldenbourg.

    Google Scholar 

  • Stockmar, J. (2004). Das große Buch der Allradtechnik. Stuttgart: Motorbuch-Verl.

    Google Scholar 

  • SUBARU Deutschland GmbH (Ed.). (2005). 33 Jahre SUBARU-Allradantrieb. Resource document. Accessed May 15, 2009, from http://www.subaru-presse.de/fileadmin/templates/downloads/awd/PressemappeSubaruAllrad-Technologie04-2005SUB.doc.

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand Journal of Economics, 21(1), 172–187.

    Article  Google Scholar 

  • Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology, 5(1), 19–50.

    Article  Google Scholar 

  • Trippe, A. J. (2003). Patinformatics: Tasks to tools. World Patent Information, 25(3), 211–221.

    Article  Google Scholar 

  • Tseng, Y., Lin, C., & Lin, Y. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216–1247.

    Article  Google Scholar 

  • USPTO (Ed.). (2007). Manual of patent examining procedure (8th ed.). Alexandria.

  • van Rijsbergen, C. J. (1981). Information retrieval (2th ed.). London: Butterworth.

  • von Wartburg, I., Teichert, T., & Rost, K. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591–1607.

    Article  Google Scholar 

  • Witt, U. (2009). Propositions about novelty. Journal of Economic Behavior & Organization, 70(1–2), 311–320.

    Article  Google Scholar 

  • Yoon, J., & Kim, K. (2011a). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics. doi:10.1007/s11192-011-0543-2.

  • Yoon, J., & Kim, K. (2011b). Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics, 88(1), 213–228.

    Article  Google Scholar 

  • Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37–50.

    Article  Google Scholar 

  • Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145–160.

    Article  Google Scholar 

Download references

Acknowledgments

The cited case study was produced in the course of a joint project with the Forschungsvereinigung Antriebstechnik (FVA). We wish to thank the FVA and all industrial members for their contributions and their support. Furthermore, we would like to thank Dipl.-Ing. (FH) Jens Potthast for extensive programming efforts on the PatVisor®, Dr. Lothar Walter for commenting an earlier version of this paper and two anonymous reviewers for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Gerken.

Appendix A: algorithm for the calculation of precision

Appendix A: algorithm for the calculation of precision

See Fig. 3.

Fig. 3
figure 3

Flow chart of the algorithm for the calculation of precision

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerken, J.M., Moehrle, M.G. A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis. Scientometrics 91, 645–670 (2012). https://doi.org/10.1007/s11192-012-0635-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0635-7

Keywords

Mathematical Subject Classification (2000)

JEL Classification

Navigation