Skip to main content
Log in

Knowledge mapping of the Iranian nanoscience and technology: a text mining approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Nanoscience and technology (NST) is a relatively new interdisciplinary scientific domain, and scholars from a broad range of different disciplines are contributing to it. However, there is an ambiguity in its structure and in the extent of multidisciplinary scientific collaboration of NST. This paper investigates the multidisciplinary patterns of Iranian research in NST based on a selection of 1,120 ISI—indexed articles published during 1974–2007. Using text mining techniques, 96 terms were identified as the main terms of the Iranian publications in NST. Then the scientific structure of the Iranian NST was mapped through multidimensional scaling, based upon the co-occurrence of the main terms in the academic publications. The results showed that the NST domain in Iranian publications has a multidisciplinary structure which is composed of different fields, such as pure physics, analytical chemistry, chemistry physics, material science and engineering, polymer science, biochemistry and new emerging topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. 1974 was the first date that Nano term appear in texts.

  2. A Self-made program with SQL server was used for keyword extraction and weighting the words.

References

  • Bhattacharya, S., & Basu, P. K. (1998). Mapping a research area at the micro level using co - word analysis. Scientometrics, 43(3), 359–372.

    Article  Google Scholar 

  • Blake, C. (2011). Text mining. In B. Cronin (Ed.), Annual review of information science and technology (Vol. 45, Section 3).

  • Börner, K., Chen, C., et al. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Bollen, J., & Van De Sompel, H. (2006). Mapping the structure of science through usage. Scientometrics, 69(2), 227–258.

    Article  Google Scholar 

  • Börner, K., Chen, C. M., et al. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., et al. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • CEC, (2001). How to map excellence in research and technological development in Europe. Brussels, 434.

  • Calero, C., Buter, R., et al. (2006). How to identify research groups using publication analysis: an example in the field of nanotechnology. Scientometrics, 66(2), 365–376.

    Article  Google Scholar 

  • Callon, M., Law, J., et al. (1986). Mapping the dynamics of science and technology: Sociology of science in the real world. New york: Sheridan House Inc.

    Google Scholar 

  • Callon, M., Courtial, J. P., et al. (1983). From translations to problematic networks–an introduction to co-word analysis. Social Science Information Sur Les Sciences Sociales, 22(2), 191–235.

    Article  Google Scholar 

  • Callon, M., Courtial, J., et al. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205.

    Article  Google Scholar 

  • Cambrosio, A., Limoges, C., et al. (1993). Historical scientometrics? Mapping over 70 years of biological safety research with coword analysis. Scientometrics, 27(2), 119–143.

    Article  Google Scholar 

  • Chang, P. L., Wu, C. C., & Leu, H. J. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19.

    Google Scholar 

  • Coulter, N., Monarch, I., et al. (1998). Software engineering as seen through its research literature: A study in co-word analysis. Journal of the American Society for Information Science, 49(13), 1206–1223.

    Article  Google Scholar 

  • Courtial, J. P. (1994). A coword analysis of scientometrics. Scientometrics, 31(3), 251–260.

    Article  Google Scholar 

  • Courtial, J. P., Callon, M., et al. (1993). The use of patent titles for identifying the topics of invention and forecasting trends. Scientometrics, 26(2), 231–242.

    Article  Google Scholar 

  • De Looze, M. A., & Lemarié, J. (1997). Corpus relevance through co-word analysis: An application to plant proteints. Scientometrics, 39(3), 267–280.

    Article  Google Scholar 

  • Garfield, E. (1963). Citation indexes in sociological and historical research. American Documentation, 14(4), 289–291.

    Article  Google Scholar 

  • Glänzel, W., Janssens, F., & Thijs, B. (2009). A comparative analysis of publication activity and citation impact based on the core literature in bioinformatics. Scientometrics, 79(1), 109–129.

    Google Scholar 

  • Harter, S. P., Nisonger, T. E., et al. (1993). Semantic relationships between cited and citing articles in library and information science journals. Journal of the American Society for Information Science, 44(9), 543–552.

    Article  Google Scholar 

  • He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133–159.

    Google Scholar 

  • Hinze, S. (1994). Bibliographical cartography of an emerging interdisciplinary discipline–the case of bioelectronics. Scientometrics, 29(3), 353–376.

    Article  Google Scholar 

  • Huang, Z., Chen, H., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3), 333–363.

    Article  Google Scholar 

  • Huang, Z., Chen, H., et al. (2005). Longitudinal nanotechnology development (1991–2002): National science foundation funding and its impact on patents. Journal of Nanoparticle Research, 7(4), 343–376.

    Article  Google Scholar 

  • Janssens, F., Glänzel, W., & De Moor, B. (2008). A hybrid mapping of information science. Scientometrics, 75(3), 607–631.

    Google Scholar 

  • Kostoff, R. N., Murday, J. S., et al. (2006a). The seminal literature of nanotechnology research. Journal of Nanoparticle Research, 8(2), 193–213.

    Article  Google Scholar 

  • Kostoff, R. N., Stump, J. A., et al. (2006b). The structure and infrastructure of the global nanotechnology literature. Journal of Nanoparticle Research, 8(3), 301–321.

    Article  Google Scholar 

  • Kostoff, R., Koytcheff, R., et al. (2007a). Technical structure of the global nanoscience and nanotechnology literature. Journal of Nanoparticle Research, 9(5), 701–724.

    Article  Google Scholar 

  • Kostoff, R. N., Koytcheff, R. G., et al. (2007b). Global nanotechnology research metrics. Scientometrics, 70(3), 565–601.

    Article  Google Scholar 

  • Kostoff, R. N., Koytcheff, R. G., et al. (2008). Structure of the nanoscience and nanotechnology applications literature. The Journal of Technology Transfer, 33(5), 472–484.

    Article  Google Scholar 

  • Law, J., & Whittaker, J. (1992). Mapping acidification research: A test of the co-word method. Scientometrics, 23(3), 417–461.

    Article  Google Scholar 

  • Law, J., Bauin, S., et al. (1988). Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics, 14(3), 251–264.

    Article  Google Scholar 

  • Lee, B., & Jeong, Y. I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3–19.

    Article  MathSciNet  Google Scholar 

  • Leydesdorff, L. (2008). The delineation of nanoscience and nanotechnology in terms of journals and patents: A most recent update. Scientometrics, 76(1), 159–167.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (in press). Interactive overlays: A new method for generating global journal maps from Web-of-Science Data. Journal of Informetrics. arXiv:1105.2925v1. http://arxiv.org/abs/1105.2925v1.

  • Leydesdorff, L., & Wagner, C. (2009). Is the United States losing ground in science? A global perspective on the world science system. Scientometrics, 78(1), 23–36.

    Article  Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2007). Knowledge emergence in scientific communication: From fullerenes to nanotubes. Scientometrics, 70(3), 603–632.

    Article  Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy, 36(6), 893–903.

    Article  Google Scholar 

  • Nisonger, T. E. (1992). Subject relationships between cited and citing documents in library and information science.

  • Noyons, E., Buter, R., et al. (2004). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology. Centre for science and technology studies (CWTS), Leiden University.

  • Noyons, E., & Van Raan, A. (1998a). Advanced mapping of science and technology. Scientometrics, 41(1), 61–67.

    Article  Google Scholar 

  • Noyons, E. C. M., & Van Raan, A. F. J. (1998b). Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research. Journal of the American society for information science, 49(1), 68–81.

    Google Scholar 

  • Noyons, E. C. M., & Van Raan, A. F. J. (1994). Bibliometric cartography of scientific and technological developments of an research- and-development field–The case of optomechatronics. Scientometrics, 30(1), 157–173.

    Article  Google Scholar 

  • Noyons, E. C. M., Buter, R. K., et al. (2003). Mapping excellence in science and technology across Europe. Brussels: Nanoscience and Nanotechnology.

    Google Scholar 

  • Onel, S., Zeid, A., & Kamarthi, S. (2011). The structure and analysis of nanotechnology co-author and citation networks. Scientometrics, 89(1), 119–138.

    Article  Google Scholar 

  • Otlet, P. (1918). Transformations in the bibliographic apparatus of the sciences. In W. B. Rayward (Ed.), The international organization and dissemination of knowledge: Selected essays of Paul Otlet (1990). Amsterdam: Elsevier.

    Google Scholar 

  • Peters, H. P. F., & Van Raan, A. F. J. (1993a). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23–45.

    Article  Google Scholar 

  • Peters, H. P. F., & Van Raan, A. F. J. (1993b). Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling. Research Policy, 22(1), 47–71.

    Article  Google Scholar 

  • Porter, A. L., Youtie, J., et al. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Price, D. (1961). Science since Babylon. New Haven: Yale University Press.

    Google Scholar 

  • Price, D. (1963). Little science, big science, New York: Columbia University Press.

    Google Scholar 

  • Price, D. (1965). Networks of Scientific Papers. Science, 149(3683), 10–515.

    Google Scholar 

  • Research, (2002). Search methodology for mapping nanotechnology patents. Karlsruhe.

  • Rikken, F., Kiers, H. A. L., et al. (1995). Mapping the dynamics of adverse drug- reactions in subsequent time periods using indscal. Scientometrics, 33(3), 367–380.

    Article  Google Scholar 

  • Rip, A., & Courtial, J. P. (1984). Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381–400.

    Article  Google Scholar 

  • Rodriguez, V., Janssens, F., Debackere, K., & De Moor, B. (2007). Do material transfer agreements affect the choice of research agendas? The case of biotechnology in Belgium. Scientometrics, 71(2), 239–269.

    Google Scholar 

  • Salton, G., & McGill, J. M. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.

    Article  Google Scholar 

  • Shapira, P., Youtie, J., & Porter, A. L. (2010). The emergence of social science research on nanotechnology. Scientometrics, 85(2), 595–611.

    Article  Google Scholar 

  • Small, H. (1980). Co-citation context analysis and the structure of paradigms. Journal of Documentation, 36(3), 183–196.

    Article  MathSciNet  Google Scholar 

  • Small, H. (2000). Charting pathways through science: Exploring Garfield’s vision of a unified index to science. The web of knowledge: A Festschrift in honor of Eugene Garfield: 449–473.

  • Stegmann, J., & Grohmann, G. (2003). Hypothesis generation guided by co-word clustering. Scientometrics, 56(1), 111–135.

    Article  Google Scholar 

  • Tang, L., & Shapira, P. (2011). China–US scientific collaboration in nanotechnology: patterns and dynamics. Scientometrics, 88(1), 1–16.

    Article  Google Scholar 

  • Van den Besselaar, P., & Heimeriks, G. (2006). Mapping research topics using word-reference co-occurrences: A method and an exploratory case study. Scientometrics, 68(3), 377–393.

    Article  Google Scholar 

  • Van Raan, A. F. J., & Tijssen, R. J. W. (1993). The neural net of neural network research–an exercise in bibliometric mapping. Scientometrics, 26(1), 169–192.

    Article  Google Scholar 

  • Wormell, I. (2000). Critical aspects of the Danish welfare state—as revealed by issue tracking. Scientometrics, 48(2), 237–250.

    Article  Google Scholar 

  • Yang, Y. H., Bhikshu, H., et al. (2011). The topic analysis of hospice care research using co-word analysis and GHSOM. Intelligent Computing and Information Science, 134, 459–465.

    Article  Google Scholar 

  • Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading nation in science. Research Policy, 35(1), 83–104.

    Article  Google Scholar 

  • Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical- citation method: An application to nanosciences. Information processing and management, 42(6), 1513–1531.

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank Dr. Kayvan Kousha, School of library and information science of Tehran university for his very useful comments and Dr. Jonathan Levitt for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mohammadi.

Appendix

Appendix

See in Table 3.

Table 3 The selected terms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, E. Knowledge mapping of the Iranian nanoscience and technology: a text mining approach. Scientometrics 92, 593–608 (2012). https://doi.org/10.1007/s11192-012-0644-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0644-6

Keywords

Navigation