Skip to main content
Log in

A cross-country comparison of innovation efficiency

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to highlight the weakness of innovative activities and guide the improvement of innovation efficiency at country-level through carefully comparing innovation efficiency across countries. Following the conceptual framework which divides innovation processes into knowledge production process (KPP) and knowledge commercialization process (KCP) and applying dual network-DEA models, this paper tries to take economic benefit of R&D outputs into account. Moreover, we construct the production frontier of the innovation processes and two component processes under different assumptions (e.g., constant returns-to-scale, variable returns-to-scale and non-increasing returns-to-scale) for 35 countries over the period 2007–2011. Based on the production frontier, we do not only estimate technical efficiency and scale efficiency for each country but also investigate and verify whether returns-to-scale of each country are decreasing or increasing. Furthermore, we add together the radial movement and the slack movement to acquire input redundancy. We decompose the input redundancy into two parts: redundancy caused by technical inefficiency (R_TI) and redundancy caused by scale inefficiency (R_SI), and carry out a detail analysis of the input redundancy. We find specific circumstances of inefficiency and redundancy vary with the different countries’ characteristics and development stages. Moreover, innovation efficiency statistically mainly depends on the KCP efficiency. In particular, the study reveals that China suffers scale inefficiency is attributed to insufficient macro-level coordination, malfunctioning funding system, and flawed evaluations and incentives. Finally, public policy implications are proposed for the inefficient countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Redundancy = Radial movement + Slack movement. The detailed definition of redundancy is proposed in “Efficiency analysis“ section.

  2. Redundancy = Radial movement + Slack movement. The detailed definition of redundancy is provided in “Efficiency analysis“ section.

  3. Datasource: OECD-MSTI. GERD is measured in million USD at the price of 2012 based on purchasing power parities (PPP).

  4. LGSTE is an affiliate of the State Council.

References

  • Abramo, G., D’Angelo, C. A., & Pugini, F. (2008). The measurement of Italian universities’ research productivity by a non parametric-bibliometric methodology. Scientometrics, 76(2), 225–244.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  MATH  Google Scholar 

  • Bonaccorsi, A., & Daraio, C. (2005). Econometric approaches to the analysis of productivity of R&D systems. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 51–74). Berlin: Springer.

  • Bonaccorsi, A., Daraio, C., & Simar, L. (2006). Advanced indicators of productivity of universitiesAn application of robust nonparametric methods to Italian data. Scientometrics, 66(2), 389–410.

    Article  Google Scholar 

  • Cao, C., Li, N., Li, X., & Liu, L. (2013). Reforming China’s S&T system. Science, 341(6145), 460–462.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3–4), 181–186.

    Article  MATH  MathSciNet  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1984). The non-Archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Färe. European Journal of Operational Research, 15(3), 333–334.

    Article  MathSciNet  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Short communication: Measuring the efficiency of decision-making units. European Journal of Operational Research, 3(4), 339.

    Article  Google Scholar 

  • Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170–1176.

    Article  MATH  Google Scholar 

  • Chen, C. P., Hu, J. L., & Yang, C. H. (2013). Produce patents or journal articles? A cross-country comparison of R&D productivity change. Scientometrics, 94(3), 833–849.

    Article  Google Scholar 

  • Choung, J.-Y., & Hwang, H.-R. (2013). The evolutionary patterns of knowledge production in Korea. Scientometrics, 94(2), 629–650.

    Article  Google Scholar 

  • Coelli, T. J. (1995). Recent developments in frontier modelling and efficiency measurement. Australian Journal of Agricultural and Resource Economics, 39(3), 219–245.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Cook, W. D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 38(6), 423–430.

    Article  Google Scholar 

  • Crespi, G. A., & Geuna, A. (2008). An empirical study of scientific production: A cross country analysis, 1981–2002. Research Policy, 37(4), 565–579.

    Article  Google Scholar 

  • Cruz-Cázares, C., Bayona-Sáez, C., & García-Marco, T. (2013). You can’t manage right what you can’t measure well: Technological innovation efficiency. Research Policy, 42(6–7), 1239–1250.

    Article  Google Scholar 

  • Dvir, R., & Pasher, E. (2004). Innovation engines for knowledge cities: An innovation ecology perspective. Journal of Knowledge Management, 8(5), 16–27.

    Article  Google Scholar 

  • Edquist, C. (1997). Systems of innovation. London: Frances Pinter.

    Google Scholar 

  • Färe, R., Grosskopf, S., & Logan, J. (1983). The relative efficiency of Illinois electric utilities. Resources and Energy, 5(4), 349–367.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., & Logan, J. (1985). The relative performance of publicly-owned and privately-owned electric utilities. Journal of Public Economics, 26(1), 89–106.

    Article  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120(3), 253–290.

    Google Scholar 

  • Førsund, F. R., Lovell, C. A., & Schmidt, P. (1980). A survey of frontier production functions and of their relationship to efficiency measurement. Journal of Econometrics, 13(1), 5–25.

    Article  MATH  Google Scholar 

  • Freeman, C., & Soete, L. (1987). The economics of industrial innovation. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative capacity. Research Policy, 31(6), 899–933.

    Article  Google Scholar 

  • Geisler, E. (1995). An integrated cost-performance model of research and development evaluation. Omega, 23(3), 281–294.

    Article  Google Scholar 

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic Literature, 20, 1661–1707.

    Google Scholar 

  • Guan, J. C., & Chen, K. H. (2010a). Measuring the innovation production process: A cross-region empirical study of China’s high-tech innovations. Technovation, 30(5), 348–358.

    Article  Google Scholar 

  • Guan, J. C., & Chen, K. H. (2010b). Modeling macro-R&D production frontier performance: An application to Chinese province-level R&D. Scientometrics, 82(1), 165–173.

    Article  Google Scholar 

  • Guan, J. C., & Chen, K. H. (2012). Modeling the relative efficiency of national innovation systems. Research Policy, 41(1), 102–115.

    Article  MathSciNet  Google Scholar 

  • Guan, J. C., Yam, R., Mok, C. K., & Ma, N. (2006). A study of the relationship between competitiveness and technological innovation capability based on DEA models. European Journal of Operational Research, 170(3), 971–986.

    Article  MATH  Google Scholar 

  • Guellec, D., & Van Pottelsberghe, B. (2001). R&D and productivity growth: Panel data analysis of 16 OECD countries. OECD Economic Studies, 2001(2), 103–126.

  • Hagedoorn, J., & Wang, N. (2012). Is there complementarity or substitutability between internal and external R&D strategies? Research Policy, 41(6), 1072–1083.

    Article  Google Scholar 

  • Han, Y.-J. (2007). Measuring industrial knowledge stocks with patents and papers. Journal of Infometrics, 1(4), 269–276.

    Article  Google Scholar 

  • Hasan, I., & Tucci, C. L. (2010). The innovation-economic growth nexus: Global evidence. Research Policy, 39(10), 1264–1276.

    Article  Google Scholar 

  • Ho, M. H.-C., & Liu, J. S. (2013). The motivations for knowledge transfer across borders: The diffusion of data envelopment analysis (DEA) methodology. Scientometrics, 94(1), 397–421.

    Article  Google Scholar 

  • Hollanders, H., & Celikel-Esser, F. (2007). Measuring innovation efficiency INNO Metrics 2007 report. Brussels: European Commission, DG Enterprise.

  • Hung, W.-C., Lee, L.-C., & Tsai, M.-H. (2009). An international comparison of relative contributions to academic productivity. Scientometrics, 81(3), 703–718.

    Article  Google Scholar 

  • Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., & Zofío, J. L. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics, 94(1), 273–303.

    Article  Google Scholar 

  • Jun, S. P., Seo, J. H., & Son, J. K. (2013). A study of the SME technology road mapping program to strengthen the R&D planning capability of Korean SMEs. Technological Forecasting and Social Change, 80(5), 1002–1014.

    Article  Google Scholar 

  • Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429.

    Article  MATH  Google Scholar 

  • Kim, Y. K., Lee, K., Park, W. G., & Choo, K. (2012). Appropriate intellectual property protection and economic growth in countries at different levels of development. Research Policy, 41(2), 358–375.

    Article  Google Scholar 

  • King, D. A. (2004). The scientific impact of nations. Nature, 430(6997), 311–316.

    Article  Google Scholar 

  • Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42.

    Article  Google Scholar 

  • Lundvall, B. Å. (2007). National innovation systems—Analytical concept and development tool. Industry and Innovation, 14(1), 95–119.

    Article  Google Scholar 

  • Moon, H. S., & Lee, J. D. (2005). A fuzzy set theory approach to national composite S&T indices. Scientometrics, 64(1), 67–83.

    Article  MathSciNet  Google Scholar 

  • Nelson, R. R. (1982). The role of knowledge in R&D efficiency. The Quarterly Journal of Economics, 97(3), 453–470.

    Article  Google Scholar 

  • OECD. (2008). OECD reviews of innovation policy China. (pp. 87–93). Paris.

  • Oxman, J. A. (1992). The global service quality measurement program at American Express Bank. National Productivity Review, 11(3), 381–392.

    Article  Google Scholar 

  • Revilla, A. J., & Fernández, Z. (2012). The relation between firm size and R&D productivity in different technological regimes. Technovation, 32(11), 609–623.

    Article  Google Scholar 

  • Romer, P. M. (1986). Increasing returns and long-run growth. The Journal of Political Economy, 94(5), 1002–1037.

    Google Scholar 

  • Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), S71–S102.

    Article  Google Scholar 

  • Rossi, F., & Emilia, U. M. R. (2002). An introductory overview of innovation studies. MPRA Working Paper No. 9106.

  • Rousseau, S., & Rousseau, R. (1997). Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics, 40(1), 45–56.

    Article  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1998). The scientific wealth of European nations: Taking effectiveness into account. Scientometrics, 42(1), 75–87.

    Article  Google Scholar 

  • Schwab, K. (2012). The global competitiveness report 2012–2013. Geneva: World Economic Forum.

    Google Scholar 

  • Sharma, S., & Thomas, V. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483–501.

    Article  Google Scholar 

  • Shi, Y. G., & Rao, Y. (2010). China’s research culture. Science, 329(5996), 1128.

    Article  Google Scholar 

  • Souza, G. S., Alves, E., & Avila, A. F. D. (1999). Technical efficiency of production in agricultural research. Scientometrics, 46(1), 141–160.

    Article  Google Scholar 

  • Stuart, T. E., Ozdemir, S. Z., & Ding, W. W. (2007). Vertical alliance networks: The case of university-biotechnology-pharmaceutical alliance chains. Research Policy, 36, 477–498.

    Article  Google Scholar 

  • Wong, C.-Y. (2013). On a path to creative destruction: Science, technology and science-based technological trajectories of Japan and South Korea. Scientometrics, 96(1), 323–336.

    Google Scholar 

Download references

Acknowledgments

This study is supported by a grant from National Natural Science Foundation of China (No. 71373254). The authors are very grateful for the valuable comments and suggestions from the anonymous reviewers and Editor-in-Chief of the journal, which significantly improved the quality and readability of the paper. We also thank Dr. Kaihua Chen for his benefit discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Guan.

Additional information

The authors’ names are alphabetically ordered and they contributed equally to this paper.

Appendix

Appendix

See Tables 8 and 9.

Table 8 Inputs and outputs data for the 35 countries beginning in 2007 and ending in 2011
Table 9 Redundancy ratio of two component process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Zuo, K. A cross-country comparison of innovation efficiency. Scientometrics 100, 541–575 (2014). https://doi.org/10.1007/s11192-014-1288-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1288-5

Keywords

Navigation