Skip to main content
Log in

Cohesive subgroups in the international collaboration network in astronomy and astrophysics

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This study employs social network analysis to identify institutions with strong international collaborative relationships in astronomical research. We find that the strongest ties tend to link institutions across continents in research collaboration. However, the effect of geographic factors is still notable in light of the fact that most of the institutions in the largest subgroup are located in Europe. Examination of the network position, measured by degree centrality, indicates that homophily is more common than heterophily in the network. A relatively high number of relational ties are observed among institutions that have similar levels of network centrality. Mutual relations are prevalent among central institutions, while strong mutual solidarity exists between institutions on the periphery of the network. This study shows a general unstable international collaborative relationship among astronomical institutions. While more and more institutions have linked up in research collaboration, many of them keep relatively weak ties. Institutions tend not remain in the same subgroup, but link to different partners over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. European Southern Observatory (ESO); European Space Agency (ESA); Gemini Observatory; the International Center for Astronomical, Medical and Ecological Research (ICAMER); the Institut de Radioastronomie Millimétrique (IRAM); National Optical Astronomy Observatory (NOAO); and Vatican Observatory are classified as international organizations in this study, since they are either joint facilities owned by multiple countries or have locations in different countries. For example, IRAM has four main locations in France and Spain, although it is headquartered in France; NOAO has observatories located in the U.S. and Chile, although it is the U.S. national research & development center for ground-based night time astronomy.

  2. Degree Centrality is measured by the number of ties that a node has in the network. The formula is: \( C_{\text{D}} (n_{i} ) = \sum\limits_{j = 1}^{g} {X_{ij} } \), \( i \ne j \), where \( X_{ij} \) is the number of ties between node i and j.

References

  • Abt, H. A. (1981). Some trends in American astronomical publications. Publications of the Astronomical Society of the Pacific, 93(553), 269–272.

    Article  Google Scholar 

  • Abt, H. A. (1990). Trends toward internationalization in astronomical literature. Publications of the Astronomical Society of the Pacific, 102(649), 368–372.

    Article  Google Scholar 

  • Abt, H. A. (2007). The frequencies of multinational papers in various sciences. Scientometrics, 72(1), 105–115.

    Article  Google Scholar 

  • Adams, J. D., Black, G. C., Clemmons, J. R., & Stephan, P. E. (2005). Scientific teams and institutional collaborations: Evidence from US universities, 1981–1999. Research Policy, 34(3), 259–285.

    Article  Google Scholar 

  • Arunachalam, S., & Jinandra Doss, M. (2000). Mapping international collaboration in science in Asia through coauthorship analysis. Current Science, 79(5), 621–628.

    Google Scholar 

  • Arunachalam, S., Srinivasan, R., & Raman, V. (1994). International collaboration in science: Participation by the Asian giants. Scientometrics, 30(1), 7–22.

    Article  Google Scholar 

  • Barjak, F., & Robinson, S. (2007). International collaboration, mobility and team diversity in the life sciences: Impact on research performance. Social Geography Discussions, 3, 121–157.

    Article  Google Scholar 

  • Beaver, Dd., & Rosen, R. (1978). Studies in scientific collaboration. Part I. Professional origins of scientific co-authorship. Scientometrics, 1(1), 65–84.

    Article  Google Scholar 

  • Beaver, Dd., & Rosen, R. (1979a). Studies in scientific collaboration. Part II. Scientific co-authorship, research productivity and visibility in the French scientific elite, 1799–1830. Scientometrics, 1(2), 133–149.

    Article  Google Scholar 

  • Beaver, Dd., & Rosen, R. (1979b). Studies in scientific collaboration. Part III. Professionalization and the natural-history of modern scientific co-authorship. Scientometrics, 1(3), 231–245.

    Article  Google Scholar 

  • Bordons, M., & Gómez, I. (2000). Collaboration networks in science. In B. Cronin & H. B. Atkins (Eds.), The web of knowledge: a festschrift in honor of Eugene Garfield (pp. 197–213). Medford: Information Today, Inc. & ASIS.

    Google Scholar 

  • Bordons, M., Gómez, I., Fernández, M. T., Zulueta, M. A., & Mendez, A. (1996). Local, domestic and international scientific collaboration in biomedical research. Scientometrics, 37(2), 279–295.

    Article  Google Scholar 

  • Braun, T., Maczelka, H., & Schubert, A. (1992). Scientometric indicators datafiles. Summary statistics and trendlines of major geopolitical regions, 1980–1989. Scientometrics, 25(2), 211–217.

    Article  Google Scholar 

  • Chang, H. W., & Huang, M. H. (2013). Prominent institutions in international collaboration network in astronomy and astrophysics. Scientometrics, 97(2), 443–460. doi:10.1007/s11192-013-0976-x.

    Article  Google Scholar 

  • Dastidar, P. G. (2004). Ocean science and technology research across the countries: A global scenario. Scientometrics, 59(1), 15–27.

    Article  Google Scholar 

  • Georghiou, L. (1998). Global cooperation in research. Research Policy, 27(6), 611–626.

    Article  Google Scholar 

  • Glänzel, W. (2000). Science in Scandinavia: A bibliometric approach. Scientometrics, 48(2), 121–150.

    Article  Google Scholar 

  • Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69–115.

    Article  Google Scholar 

  • Glänzel, W. (2002). Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50(3), 461–473.

    Google Scholar 

  • Glänzel, W., & de Lange, C. (1997). Modelling and measuring multilateral co-authorship in international scientific collaboration. Part II. A comparative study on the extent and change of international scientific collaboration links. Scientometrics, 40(3), 605–626.

    Article  Google Scholar 

  • Glänzel, W., & de Lange, C. (2002). A distributional approach to multinationality measures of international scientific collaboration. Scientometrics, 54(1), 75–89.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (2001). Double effort = double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (2004). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 257–276). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Glänzel, W., Schubert, A., & Czerwon, H. J. (1999). A bibliometric analysis of international scientific cooperation of the European Union (1985–1995). Scientometrics, 45(2), 185–202.

    Article  Google Scholar 

  • Glänzel, W., & Winterhager, M. (1992). International collaboration of three East European countries with Germany in the sciences, 1980–1989. Scientometrics, 25(2), 219–227.

    Article  Google Scholar 

  • Gómez, I., Fernández, M. T., & Sebastián, J. (1999). Analysis of the structure of international scientific cooperation networks through bibliometric indicators. Scientometrics, 44(3), 441–457.

    Article  Google Scholar 

  • Hara, N., Solomon, P., Kim, S. L., & Sonnenwald, D. H. (2003). An emerging view of scientific collaboration: Scientists’ perspectives on collaboration and factors that impact collaboration. Journal of the American Society for Information Science and Technology, 54(10), 952–965.

    Article  Google Scholar 

  • Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.

    Article  Google Scholar 

  • Kretschmer, H. (1997). Patterns of behaviour in coauthorship networks of invisible colleges. Scientometrics, 40(3), 579–591.

    Article  Google Scholar 

  • Lazega, E., Mounier, L., Jourda, M. T., & Stofer, R. L. (2006). Organizational vs. personal social capital in scientists’ performance: A multi-level network study of elite French cancer researchers (1996–1998). Scientometrics, 67(1), 27–44.

    Article  Google Scholar 

  • Lorigo, L., & Pellacini, F. (2007). Frequency and structure of long distance scholarly collaborations in a physics community. Journal of the American Society for Information Science and Technology, 58(10), 1497–1502.

    Article  Google Scholar 

  • Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding patterns of international scientific collaboration. Science, Technology and Human Values, 17(1), 101–126.

    Article  Google Scholar 

  • Luukkonen, T., Tijssen, R. J. W., Persson, O., & Sivertsen, G. (1993). The measurement of international scientific collaboration. Scientometrics, 28(1), 15–36.

    Article  Google Scholar 

  • Melin, G. (1996). The networking university: A study of a Swedish university using institutional co-authorships as an indicator. Scientometrics, 35(1), 15–31.

    Article  Google Scholar 

  • Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213–238.

    Article  Google Scholar 

  • Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68(1), 103–127.

    Article  Google Scholar 

  • Nagpaul, P. S., & Sharma, L. (1994). Research output and transnational cooperation in physics subfields: A multidimensional analysis. Scientometrics, 31(1), 97–122.

    Article  Google Scholar 

  • Narin, F., Stevens, K., & Whitlow, E. S. (1991). Scientific co-operation in Europe and the citation of multinationally authored papers. Scientometrics, 21(3), 313–323.

    Article  Google Scholar 

  • Narvaez-Berthelemot, N. (1995). An index to measure the international collaboration of developing countries based on the participation of national institutions: The case of Latin America. Scientometrics, 34(1), 37–44.

    Article  Google Scholar 

  • Narvaez-Berthelemot, N., Frigoletto, L. P., & Miquel, J. F. (1992). International scientific collaboration in Latin America. Scientometrics, 24(3), 373–392.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. doi:10.1103/PhysRevE.64.016131.

    Article  Google Scholar 

  • Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132. doi:10.1103/PhysRevE.64.016132.

    Article  Google Scholar 

  • Newman, M. E. J. (2001c). The structure of scientific collaboration networks. PNAS Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.

    Article  MATH  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. PNAS Proceedings of the National Academy of Sciences of the United States of America, 101(suppl. 1), 5200–5205.

    Article  Google Scholar 

  • Persson, O., Melin, G., Danell, R., & Kaloudis, A. (1997). Research collaboration at Nordic universities. Scientometrics, 39(2), 209–223.

    Article  Google Scholar 

  • Schubert, A., & Braun, T. (1990). International collaboration in the sciences, 1981–1985. Scientometrics, 19(1–2), 3–10.

    Article  Google Scholar 

  • van Raan, A. F. J. (1998). The influence of international collaboration on the impact of research results: Some simple mathematical considerations concerning the role of self-citations. Scientometrics, 42(3), 423–428.

    Article  Google Scholar 

  • Wagner, C. S. (2005). Six case studies of international collaboration in science. Scientometrics, 62(1), 3–26.

    Article  Google Scholar 

  • Wagner, C. S., & Leydesdorff, L. (2005a). Mapping the network of global science: Comparing international co-authorships from 1990 to 2000. International Journal of Technology and Globalisation, 1(2), 185–208.

    Article  Google Scholar 

  • Wagner, C. S., & Leydesdorff, L. (2005b). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.

    Article  Google Scholar 

  • Wagner, C. S., & Leydesdorff, L. (2008). International collaboration in science and the formation of a core group. Journal of Informetrics, 2(4), 317–325.

    Article  Google Scholar 

  • Wagner-Döbler, R. (2001). Continuity and discontinuity of collaboration behaviour since 1800—from a bibliometric point of view. Scientometrics, 52(3), 503–517.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press.

    Book  Google Scholar 

  • White, J. C. (1992). Publication rates and trends in international collaborations for astronomers in developing countries, Eastern European Countries, and the former Soviet Union. Publications of the Astronomical Society of the Pacific, 104(676), 472–476.

    Article  Google Scholar 

  • Yamashita, Y., & Okubo, Y. (2006). Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI). Scientometrics, 68(2), 303–324.

    Article  Google Scholar 

  • Yoshikane, F., & Kageura, K. (2004). Comparative analysis of coauthorship networks of different domains: The growth and change of networks. Scientometrics, 60(3), 433–444.

    Article  Google Scholar 

  • Yoshikane, F., Nozawa, T., & Tsuji, K. (2006). Comparative analysis of co-authorship networks considering authors’ roles in collaboration: Differences between the theoretical and application areas. Scientometrics, 68(3), 643–655.

    Article  Google Scholar 

  • Zitt, M., & Bassecoulard, E. (2004). Internationalisation in science in the prism of bibliometric indicators. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 407–436). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Zitt, M., Bassecoulard, E., & Okubo, Y. (2000). Shadows of the past in international cooperation: Collaboration profiles of the top five producers of science. Scientometrics, 47(3), 627–657.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Dr. Virginia L. Trimble for her valuable comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Hsuan Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HW., Huang, MH. Cohesive subgroups in the international collaboration network in astronomy and astrophysics. Scientometrics 101, 1587–1607 (2014). https://doi.org/10.1007/s11192-014-1312-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1312-9

Keywords

Navigation