Skip to main content
Log in

Collaboration strategies and effects on university research: evidence from Chinese universities

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Previous studies have provided inconsistent evidence pertaining to the relationship between university–industry collaboration and university performance. This study’s objective is to go beyond traditional viewpoints, which mostly confine university–industry collaboration within a separate channel, to build the relationship between university–industry collaboration overall channel characteristics and university research performance. In doing so, we define two collaboration strategies, collaboration breadth, which is the scope of different channels, and collaboration depth, which is the extent that universities deepen into different channels. Based on a comprehensive panel dataset of Chinese universities in mainland China in 2009–2013, we find that collaboration breadth and collaboration depth have a linear and curvilinear effect on academic research performance, respectively. Moreover, the interaction of collaboration breadth and depth shows a negative impact on academic research performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There are inconsistent terms used to capture interactions between university and industry, such as collaboration, relation, relationship, knowledge/technology transfer, university engagement and university commercialization, university–industry links, science-technology interface, and others. There might be various reasons for their interpretations of a university–industry link, and, consequently, different terms are used. In this study, we will not differentiate between these different terms because channels under our examination include different aspects of university–industry collaboration, which is difficult to combine into one single term.

  2. East China includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan; Middle China includes Anhui, Hubei, Hunan, Shanxi, Jilin and Heilongjiang; and West China includes Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu and Guangxi.

References

  • Agrawal, A. K. (2001). University-to-industry knowledge transfer: Literature review and unanswered questions. International Journal of Management Reviews, 3(4), 285–302.

    Article  Google Scholar 

  • Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48(1), 44–60.

    Article  Google Scholar 

  • Arza, V., & Vazquez, C. (2010). Interactions between public research organisations and industry in Argentina. Science and Public Policy, 37(7), 499–511.

    Article  Google Scholar 

  • Audretsch, D. B., & Link, A. N. (2012). Entrepreneurship and innovation: Public policy frameworks. The Journal of Technology Transfer, 37(1), 1–17.

    Article  Google Scholar 

  • Balázs, K., Faulkner, W., & Schimank, U. (1995). Transformation of the research systems of post-communist Central and Eastern Europe: An introduction. Social Studies of Science, 25(4), 613–632.

    Article  Google Scholar 

  • Balázs, K., & Plonski, G. A. (1994). Academic-industry relations in middle-income countries: East Europe and Ibero-America. Science and Public Policy, 21(2), 109–116.

    Google Scholar 

  • Balconi, M., & Laboranti, A. (2006). University–industry interactions in applied research: The case of microelectronics. Research Policy, 35(10), 1616–1630.

    Article  Google Scholar 

  • Baldini, N. (2006). University patenting and licensing activity: A review of the literature. Research Evaluation, 15(3), 197–207.

    Article  Google Scholar 

  • Behrens, T. R., & Gray, D. O. (2001). Unintended consequences of cooperative research: Impact of industry sponsorship on climate for academic freedom and other graduate student outcome. Research Policy, 30(2), 179–199.

    Article  Google Scholar 

  • Bekkers, R., & Bodas Freitas, I. M. (2008). Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy, 37(10), 1837–1853.

    Article  Google Scholar 

  • Benner, M., & Sandström, U. (2000). Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy, 29(2), 291–301.

    Article  Google Scholar 

  • Bhattacharya, S., & Arora, P. (2007). Industrial linkages in Indian universities: What they reveal and what they imply? Scientometrics, 70(2), 277–300.

    Article  Google Scholar 

  • Blumenthal, D., Campbell, E. G., Causino, N., & Louis, K. S. (1996). Participation of life-science faculty in research relationships with industry. New England Journal of Medicine, 335(23), 1734–1739.

    Article  Google Scholar 

  • Blumenthal, D., Causino, N., & Campbell, E. G. (1997). Academic-industry research relationships in genetics: A field apart. Nature Genetics, 16, 104–108.

    Article  Google Scholar 

  • Bozeman, B. (2000). Technology transfer and public policy: A review of research and theory. Research Policy, 29(4–5), 627–655.

    Article  Google Scholar 

  • Bray, M. J., & Lee, J. N. (2000). University revenues from technology transfer: Licensing fees vs. equity positions. Journal of Business Venturing, 15(5–6), 385–392.

    Article  Google Scholar 

  • Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  • Brooks, H., & Randazzese, L. (1999). University–industry relations: The next four years and beyon. In L. M. Branscomb & J. Keller (Eds.), From investing in innovation: Creating and innovation policy that works (pp. 361–399). Combridge: MIT Press.

    Google Scholar 

  • Bulut, H., & Moschini, G. (2009). US universities’ net returns from patenting and licensing: A quantile regression analysis. Economics of Innovation and New Technology, 18(2), 123–137.

    Article  Google Scholar 

  • Chataway, J., & Hewitt, T. (1999). Managing institutional change in the science and technology systems of Eastern Europe and East Africa. Development in Practice, 9(1–2), 88–102.

    Article  Google Scholar 

  • Chatterjee, S., & Price, B. (1991). Regression analysis by example. New York: Wiley.

    Google Scholar 

  • Cohen, W. M., Florida, R., Randazzese, L., & Walsh, J. (1998). Industry and the academy: Uneasy partners in the cause of technological advance. In R. Noll (Ed.), Challenges to research universities. Washington, DC: Brookings Institution Press.

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.

    Article  Google Scholar 

  • Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48(1), 1–23.

    Article  Google Scholar 

  • Colyvas, J., Crow, M., Gelijns, A., Richard, R. M., Nelson, R. R., Rosenberg, N., & Sampa, B. N. (2002). How do university inventions get into practice? Management Science, 48(1), 61–72.

    Article  Google Scholar 

  • D’Este, P., & Patel, P. (2007). University–industry linkages in the UK: What are the factors underlying the variety of interactions with industry? Research Policy, 36(9), 1295–1313.

    Article  Google Scholar 

  • Datta, S., & Saad, M. (2008). Social capital and university–industry–government networks in offshore outsourcing—the case of India. Technology Analysis and Strategic Management, 20(6), 741–754.

    Article  Google Scholar 

  • Dutrénit, G., & Arza, V. (2010). Channels and benefits of interactions between public research organisations and industry: Comparing four Latin American countries. Science and Public Policy, 37(7), 541–553.

    Article  Google Scholar 

  • Etzkowitz, H. (1998). The norms of entrepreneurial science: Cognitive effects of the new university–industry linkages. Research Policy, 27(8), 823–833.

    Article  Google Scholar 

  • Etzkowitz, H., de Carvalho Mello, J. M., & Jose, M. (2004). The rise of a triple helix culture: Innovation in Brazilian economic and social development. International Journal of Technology Management & Sustainable Development, 2(3), 159–173.

    Article  Google Scholar 

  • Etzkowitz, H., & Klofsten, M. (2005). The innovating region: Toward a of knowledge-based regional development. R&D Management, 35(3), 243–255.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and “Mode 2” to a triple helix of university–industry–government relations. Research Policy, 29(2), 109–123.

    Article  Google Scholar 

  • Eun, J.-H., Lee, K., & Wu, G. (2006). Explaining the “University-run enterprises” in China: A theoretical framework for university–industry relationship in developing countries and its application to China. Research Policy, 35(9), 1329–1346.

    Article  Google Scholar 

  • Florida, R., & Cohen, W. M. (1999). Engine or infrastructure? The university role in economic development. In L. M. Branscomb, F. Kodama, & R. Florida (Eds.), From industrializing knowledge. University–industry linkages in Japan and the United States (pp. 589–610). Cambridge MA/london: MIT Press.

    Google Scholar 

  • Fontana, R., Geuna, A., & Matt, M. (2006). Factors affecting university–industry R&D projects: The importance of searching, screening and signalling. Research Policy, 35(2), 309–323.

    Article  Google Scholar 

  • Geuna, A., & Muscio, A. (2009). The governance of university knowledge transfer: A critical review of the literature. Minerva, 47(1), 93–114.

    Article  Google Scholar 

  • Geuna, A., & Nesta, L. (2003). University patenting and its effects on academic research. No. 99. SPRU-Science and Technology Policy Research, University of Sussex.

  • Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on academic research: The emerging European evidence. Research Policy, 35(6), 790–807.

    Article  Google Scholar 

  • Giuliani, E., & Arza, V. (2009). What drives the formation of ‘valuable’ university–industry linkages? Insights from the wine industry. Research Policy, 38(6), 906–921.

    Article  Google Scholar 

  • Gluck, M. E., Blumenthal, D., & Stoto, M. A. (1987). University–industry relationships in the life sciences: Implications for students and post-doctoral fellows. Research Policy, 16(6), 327–336.

    Article  Google Scholar 

  • Godin, B., & Gingras, Y. (2000). Impact of collaborative research on academic science. Science and Public Policy, 27(1), 65–73.

    Article  Google Scholar 

  • González-Pernía, J. L., Kuechle, G., & Peña-Legazkue, I. (2013). An assessment of the determinants of university technology transfer. Economic Development Quarterly, 27(1), 6–17.

    Article  Google Scholar 

  • Greene, W. (2003). Econometric analysis (5th ed.). Upper Saddle River: Pretice-Hall.

    Google Scholar 

  • Gulbrandsen, M., & Smeby, J.-C. (2005). Industry funding and university professors’ research performance. Research Policy, 34(6), 932–950.

    Article  Google Scholar 

  • Harmon, B., Ardishvili, A., Cardozo, R., Elder, T., Leuthold, J., Parshall, J., et al. (1997). Mapping the university technology transfer process. Journal of Business Venturing, 12(6), 423–434.

    Article  Google Scholar 

  • Hemmert, M., Bstieler, L., & Okamuro, H. (2014). Bridging the cultural divide: Trust formation in university–industry research collaborations in the US, Japan, and South Korea. Technovation, 34(10), 605–616.

    Article  Google Scholar 

  • Hicks, D., & Hamilton, K. S. (1999). Does university–industry collaboration adversely affect university research? Issues in Science and Technology, Summer, 99(16), 74–75.

    Google Scholar 

  • Hilbe, J. M. (2011). Negative binomial regression (2nd ed.). Combridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Jeong, S., Choi, J. Y., & Kim, J. (2011). The determinants of research collaboration modes: Exploring the effects of research and researcher characteristics on co-authorship. Scientometrics, 89(3), 967–983.

    Article  Google Scholar 

  • Johnson, A. (2001). ‘Functions in innovation system approaches,’ In Editor (ed.)^(eds.), From Book Functions in innovation system approaches, City, at.

  • Katila, R. (2002). New product search over time: Past ideas in their prime? Academy of Management Journal, 45(5), 995–1010.

    Article  Google Scholar 

  • Landry, R., & Amara, N. (1998). The impact of transaction costs on the institutional structuration of collaborative academic research. Research Policy, 27(9), 901–913.

    Article  Google Scholar 

  • Lee, Y. S. (1996). ‘Technology transfer’ and the research university: A search for the boundaries of university–industry collaboration. Research Policy, 25(6), 843–863.

    Article  Google Scholar 

  • Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.

    Article  Google Scholar 

  • Leydesdorff, L., & Meyer, M. (2003). The triple helix of university–industry-government relations. Scientometrics, 58(2), 191–203.

    Article  Google Scholar 

  • Li, X. (2009). China’s regional innovation capacity in transition: An empirical approach. Research Policy, 38(2), 338–357.

    Article  Google Scholar 

  • Liang, L., Chen, L., Wu, Y., & Yuan, J. (2012). The role of Chinese universities in enterprise–university research collaboration. Scientometrics, 90(1), 253–269.

    Article  Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.

    Article  MATH  MathSciNet  Google Scholar 

  • Link, A. N., Siegel, D. S., & Bozeman, B. (2007). An empirical analysis of the propensity of academics to engage in informal university technology transfer. Industrial and Corporate Change, 16(4), 641–655.

    Article  Google Scholar 

  • Liu, X. (2005). ‘China’s development model: An alternative strategy for technological catch-up,’ in Editor (ed.)^(eds.), From book China’s development model: An alternative strategy for technological catch-up, City, at.

  • Liu, X., & White, S. (2001). Comparing innovation systems: A framework and application to China’s transitional context. Research Policy, 30(7), 1091–1114.

    Article  Google Scholar 

  • Li-Ying, J., Wang, Y., & Salomo, S. (2014). An inquiry on dimensions of external technology search and their influence on technological innovations: Evidence from Chinese firms. R&D Management, 44(1), 53–74.

    Article  Google Scholar 

  • Lundvall, B.-Å., Intarakumnerd, P., & Vang-Lauridsen, J. (2006). Asia’s innovation systems in transition Cheltenham, UK; Northampton, MA: E. Elgar, at http://www.loc.gov/catdir/toc/ecip062/2005031680.html.

  • Lv, P. (2014). How does openness affect innovation? Evidence from national key laboratories in China. Science and Public Policy, 41, 180–193.

    Article  Google Scholar 

  • Malik, T. H. (2013). National institutional differences and cross-border university–industry knowledge transfer. Research Policy, 42(3), 776–787.

    Article  Google Scholar 

  • Mansfield, E. (1995). Academic research underlying industrial innovations: Sources, characteristics, and financing. The Review of Economics and Statistics, 77(1), 55–65.

    Article  MathSciNet  Google Scholar 

  • Mansfield, E., Romeo, A., Schwartz, M., Teece, D., Wagner, S., & Brach, P. (1982). Technology transfer, productivity, and economic policy. New York: Norton.

    Google Scholar 

  • Maruyama, M. (1988). Technology policy and economic performance: Lessons from Japan : Christopher Freeman 155 pages, ? 0.00 (London, Frances Pinter, 1987). Futures, 20(2), 210–213.

    Article  Google Scholar 

  • Meyer-Krahmer, F., & Schmoch, U. (1998). Science-based technologies: University–industry interactions in four fields. Research Policy, 27(8), 835–851.

    Article  Google Scholar 

  • Motohashi, K. (2005). University–industry collaborations in Japan: The role of new technology-based firms in transforming the national innovation system. Research Policy, 34(5), 583–594.

    Article  Google Scholar 

  • Motohashi, K., & Yun, X. (2007). China’s innovation system reform and growing industry and science linkages. Research Policy, 36(8), 1251–1260.

    Article  Google Scholar 

  • Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by U.S. universities: An assessment of the effects of the Bayh–Dole act of 1980. Research Policy, 30(1), 99–119.

    Article  Google Scholar 

  • Mowery, D. C., & Ziedonis, A. A. (2001). The geographic reach of market and non-market channels of technology transfer: Comparing citations and licenses of university patents. In C. John (Ed.), From globalization and the location of firms. Northampton, MA: Edward Elgar Publishing Limited.

    Google Scholar 

  • Mowery, D. C., & Ziedonis, A. A. (2002). Academic patent quality and quantity before and after the Bayh–Dole act in the United States. Research Policy, 31(3), 399.

    Article  Google Scholar 

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D’Este, P., et al. (2013). Academic engagement and commercialisation: A review of the literature on university–industry relations. Research Policy, 42(2), 423–442.

    Article  Google Scholar 

  • Perkmann, M., & Walsh, K. (2008). Engaging the scholar: Three types of academic consulting and their impact on universities and industry. Research Policy, 37(10), 1884–1891.

    Article  Google Scholar 

  • Perkmann, M., & Walsh, K. (2009). The two faces of collaboration: Impacts of university–industry relations on public research. Industrial and Corporate Change.

  • Rapini, M. S., e Albuquerque, E. D. M., Chave, C. V., Silva, L. A., de Souza, S. G. A., Righi, H. M., & da Cruz, W. M. S. (2009). University–industry interactions in an immature system of innovation: Evidence from Minas Gerais, Brazil. Science and Public Policy, 36(5), 373–386.

    Article  Google Scholar 

  • Rasmussen, E., Moen, Ø., & Gulbrandsen, M. (2006). Initiatives to promote commercialization of university knowledge. Technovation, 26(4), 518–533.

    Article  Google Scholar 

  • Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research Policy, 23(3), 323–348.

    Article  Google Scholar 

  • Sa, C. M., & Litwin, J. (2011). University–industry research collaborations in Canada: The role of federal policy instruments. Science and Public Policy, 38(6), 425–435.

    Article  Google Scholar 

  • Schartinger, D., Schibany, A., & Gassler, H. (2001). Interactive relations between universities and firms: Empirical evidence for Austria. The Journal of Technology Transfer, 26(3), 255–268.

    Article  Google Scholar 

  • Schrader, S. (1991). Informal technology transfer between firms: Cooperation through information trading. Research Policy, 20(2), 153–170.

    Article  Google Scholar 

  • Shane, S. (2002). Selling university technology: Patterns from MIT. Management Science, 48(1), 122–137.

    Article  Google Scholar 

  • Siegel, D. S., Veugelers, R., & Wright, M. (2007). Technology transfer offices and commercialization of university intellectual property: Performance and policy implications. Oxford Review of Economic Policy, 23(4), 640–660.

    Article  Google Scholar 

  • Slaughter, S., & Leslie, L. L. (1997). Academic capitalism: Politics policies and the entrepreneurial university. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Sutz, J. (2000). The university–industry–government relations in Latin America. Research Policy, 29(2), 279–290.

    Article  Google Scholar 

  • Teixeira, A. C., & Mota, L. (2012). A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links. Scientometrics, 93(3), 719–743.

    Article  Google Scholar 

  • Thursby, J. G., & Thursby, M. C. (2002). Who is selling the ivory tower? Sources of growth in university licensing. Management Science, 48(1), 90–104.

    Article  Google Scholar 

  • Van Looy, B., Callaert, J., & Debackere, K. (2006). Publication and patent behavior of academic researchers: Conflicting, reinforcing or merely co-existing? Research Policy, 35(4), 596–608.

    Article  Google Scholar 

  • Van Looy, B., Ranga, M., Callaert, J., Debackere, K., & Zimmermann, E. (2004). Combining entrepreneurial and scientific performance in academia: Towards a compounded and reciprocal Matthew-effect? Research Policy, 33(3), 425–441.

    Article  Google Scholar 

  • Villasana, M. (2011). Fostering university–industry interactions under a triple helix model: The case of Nuevo Leon, Mexico. Science and Public Policy, 38(1), 43–53.

    Article  Google Scholar 

  • Wang, Y., Huang, J., Chen, Y., Pan, X., & Chen, J. (2013a). Have Chinese universities embraced their third mission? New insight from a business perspective. Scientometrics, 97(2), 207–222.

    Article  Google Scholar 

  • Wang, Y., & Li-Ying, J. (2014). When does inward technology licensing facilitate firms’ NPD performance? A contingency perspective. Technovation, 34(1), 44–53.

    Article  Google Scholar 

  • Wang, Y., Pan, X., Chen, Y., & Gu, X. (2013b). Do references in transferred patent documents signal learning opportunities for the receiving firms? Scientometrics, 95(2), 731–752.

    Article  Google Scholar 

  • Wang, Y., & Zhou, Z. (2013). The dual role of local sites in assisting firms with developing technological capabilities: Evidence from China. International Business Review, 22(1), 63–76.

    Article  Google Scholar 

  • Williams, D. (2011). Russia’s innovation system: Reflection on the past, present and future. International Journal of Transitions and Innovation Systems, 1(4), 394–412.

    Article  Google Scholar 

  • Xue, L. (1997). A historical perspective of China’s innovation system reform: A case study. Journal of Engineering and Technology Management, 14(1), 67–81.

    Article  Google Scholar 

  • Zhou, W. (2012). Determinants and effects of research partnerships in China’s emerging market. Contemporary Economic Policy, 30(1), 129–147.

    Article  Google Scholar 

  • Zucker, L. G., Darby, M. R., & Armstrong, J. (1998). Geographically localized knowledge: Spillovers or markets? Economic Inquiry, 36, 65–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, D., Li, W. et al. Collaboration strategies and effects on university research: evidence from Chinese universities. Scientometrics 103, 725–749 (2015). https://doi.org/10.1007/s11192-015-1552-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1552-3

Keywords

Navigation