Skip to main content
Log in

Ranking scientific publications with similarity-preferential mechanism

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Along with the advance of internet and fast updating of information, nowadays it is much easier to search and acquire scientific publications. To identify the high quality articles from the paper ocean, many ranking algorithms have been proposed. One of these methods is the famous PageRank algorithm which was originally designed to rank web pages in online systems. In this paper, we introduce a preferential mechanism to the PageRank algorithm when aggregating resource from different nodes to enhance the effect of similar nodes. The validation of the new method is performed on the data of American Physical Society journals. The results indicate that the similarity-preferential mechanism improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Though our method is only applied to citation networks in this paper, it can be naturally used in many other real systems, such as designing search engines in the World Wide Web and revealing the leaderships in social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksnes, D. W. (2003). A macro study of self-citation. Scientometrics, 56(2), 235–246.

    Article  Google Scholar 

  • Bergstrom, C. T. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College and Research Libraries News, 68(5), 314–316.

    Google Scholar 

  • Bergstrom, C. T., & West, J. D. (2008). Assessing citations with the eigenfactor (TM) metrics. Neurology, 71(23), 1850–1851.

    Article  Google Scholar 

  • Bollen, J., Rodriquez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.

    Article  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Article  Google Scholar 

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8–15.

    Article  Google Scholar 

  • Ding, Y. (2011). Applying weighted PageRank to author citation networks. Journal of the American Society for Information Science and Technology, 62(2), 236–245.

    Article  Google Scholar 

  • Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229–2243.

    Article  Google Scholar 

  • Fersht, A. (2009). The most influential factors: Impact factor and eigenfactor. Proceedings of the National Academy of Sciences of the United States of America, 106, 6883–6884.

    Article  Google Scholar 

  • Fiala, D. (2012). Time-aware PageRank for bibliographic networks. Journal of Informetrics, 6(3), 370–388.

    Article  Google Scholar 

  • Fiala, D., Rousselot, F., & Ježek, K. (2008). Pagerank for bibliographic networks. Scientometrics, 76(1), 135–158.

    Article  Google Scholar 

  • Foley, J., & Della Sala, S. (2010). The impact of self-citation. Cortex, 46(6), 802–810.

    Article  Google Scholar 

  • Frey, B. S., & Rost, K. (2010). Do rankings reflect research quality? Journal of Applied Economics, 13(1), 1–38.

    Article  Google Scholar 

  • Frobenius, G. (1912). Über Matrizen aus nicht negativen Elementen. Königliche Akademie der Wissenschaften.

  • González-Pereira, B., Guerrero-Bote, V. P., & Moya-Anegón, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379–391.

    Article  Google Scholar 

  • Guimerà, R., & Sales-Pardo, M. (2009). Missing and spurious interactions and the reconstruction of complex networks. Proceedings of the National Academy of Sciences, 106(52), 22073–22078.

    Article  Google Scholar 

  • Ioannidis, J. P. (2015). A generalized view of self-citation: Direct, co-author, collaborative, and coercive induced self-citation. Journal of Psychosomatic Research, 78(1), 7–11.

    Article  Google Scholar 

  • Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6), 1150–1170.

    Article  Google Scholar 

  • Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing and Management, 44(2), 800–810.

    Article  Google Scholar 

  • Maslov, S., & Redner, S. (2008). Promise and pitfalls of extending Google’s PageRank algorithm to citation networks. The Journal of Neuroscience, 28(44), 11103–11105.

    Article  Google Scholar 

  • Nykl, M., Ježek, K., Fiala, D., & Dostal, M. (2014). PageRank variants in the evaluation of citation networks. Journal of Informetrics, 8(3), 683–692.

    Article  Google Scholar 

  • Perron, O. (1907). Zur theorie der matrices. Mathematische Annalen, 64(2), 248–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.

    Article  Google Scholar 

  • Sorzano, C. O. S., Vargas, J., Caffarena-Fernández, G., & Iriarte, A. (2014). Comparing scientific performance among equals. Scientometrics, 101(3), 1731–1745.

    Article  Google Scholar 

  • Su, C., Pan, Y., Zhen, Y., Ma, Z., Yuan, J., Guo, H., et al. (2011). PrestigeRank: A new evaluation method for papers and journals. Journal of Informetrics, 5(1), 1–13.

    Article  Google Scholar 

  • Walker, D., Xie, H., Yan, K. K., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007(06), P06010.

    Article  Google Scholar 

  • Yan, E. (2014). Topic-based PageRank: Toward a topic-level scientific evaluation. Scientometrics, 100(2), 407–437.

    Article  Google Scholar 

  • Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information processing and management, 47(1), 125–134.

    Article  Google Scholar 

  • Yao, L., Wei, T., Zeng, A., Fan, Y., & Di, Z. (2014). Ranking scientific publications: The effect of nonlinearity. Scientific Reports, 4, 6663.

    Article  Google Scholar 

  • Zeng, A., & Cimini, G. (2012). Removing spurious interactions in complex networks. Physical Review E, 85(3), 036101.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61374175, 61174150 and 11547188, the Young Scholar Program of Beijing Normal University (2014NT38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An Zeng or Ying Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zeng, A., Fan, Y. et al. Ranking scientific publications with similarity-preferential mechanism. Scientometrics 106, 805–816 (2016). https://doi.org/10.1007/s11192-015-1805-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1805-1

Keywords

Navigation