Abstract
With great versatile characteristics, micro/nano-bubble related research have attracted much attention due to their extensive applications in the last half century. Researchers not merely focus on their physi-chemical properties, but also aim at their well-controlled generation methods and potential adhibition field. It can be expected that the future prospects of micro/nano-bubble related research will be tremendous and that there will be even more to be explored. In this case study, a bibliometric analysis was conducted to evaluate micro/nano-bubble related research from 1991 to 2014, based on the Science Citation Index EXPANDED database. The Ultrasound in Medicine and Biology with the highest h-index of 56 is the leading journal in this field, publishing 6.9 % of articles over this period, followed by Langmuir and Journal of the Acoustical Society of America. USA and the Univ Toronto, Canada were the most productive country and institution, respectively, while the USA, was the most internationally collaborative and had the highest h-index (111) of all countries. A new method named “word cluster analysis” was successfully applied to trace the research hotspots. Innovation in detection means and novel pathways for medical applications via micro/nano-bubble is considered to relate to the increasingly new types and varieties of diseases or cancers, as well as the well-controlled generation of micro/nano-bubbles.









References
Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175–1180.
Aoi, A., Watanabe, Y., Mori, S., Takahashi, M., Vassaux, G., & Kodama, T. (2008). Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound in Medicine and Biol, 34(3), 425–434.
Baskerville, C. (1904). The titles of papers. Science (New York, NY), 19(487), 702–703.
Bax, J. J., Molhoek, S. G., van Erven, L., Voogd, P. J., Somer, S., Boersma, E., et al. (2003). Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dyssynchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 91(1), 94–97.
Bell, M., & Pavitt, K. (1997). Technological accumulation and industrial growth: Contrasts between developed and developing countries. Cambridge: Cambridge University Press.
Blomley, M. J. K., Cooke, J. C., Unger, E. C., Monaghan, M. J., & Cosgrove, D. O. (2001). Microbubble contrast agents: A new era in ultrasound. BMJ. British Medical Journal, 322(7296), 1222–1225.
Burns, P. N., Wilson, S. R., & Simpson, D. H. (2000). Pulse inversion imaging of liver blood flow: Improved method for characterizing focal masses with microbubble contrast. Investigative Radiology, 35(1), 58.
Ciriminna, R., & Pagliaro, M. (2013). On the use of the h-index in evaluating chemical research. Chemistry Central Journal, 7(1), 132.
Claudon, M., Dietrich, C. F., Choi, B. I., Cosgrove, D. O., Kudo, M., Nolsøe, C. P., et al. (2013). Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver-update 2012. Ultraschall in der Medizin, 34(1), 11–29.
De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.
Delalande, A., Kotopoulis, S., Postema, M., Midoux, P., & Pichon, C. (2013). Sonoporation: Mechanistic insights and ongoing challenges for gene transfer. Gene, 525(2), 191–199.
Delalande, A., Postema, M., Mignet, N., Midoux, P., & Pichon, C. (2012). Ultrasound and microbubble-assisted gene delivery: Recent advances and ongoing challenges. Therapeutic Delivery, 3(10), 1199–1215.
Dixon, A. J., Dhanaliwala, A. H., Chen, J. L., & Hossack, J. A. (2013). Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound in Medicine and Biology, 39(7), 1267–1276.
Doida, Y., Marcello, K. R., Brayman, A. A., Cox, C., Barned, S., & Miller, M. W. (1998). Sonochemicals increase the mutation frequency of V79 cells in vitro. Ultrasound in Medicine and Biology, 24(8), 1209–1213.
Endo, A., Srithongouthai, S., Nashiki, H., Teshiba, I., Iwasaki, T., Hama, D., & Tsutsumi, H. (2008). DO-increasing effects of a microscopic bubble generating system in a fish farm. Marine Pollution Bulletin, 57(1), 78–85.
Escoffre, J. M., Piron, J., Novell, A., & Bouakaz, A. (2011). Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Molecular Pharmaceutics, 8(3), 799–806.
Ferrara, K., Pollard, R., & Borden, M. (2007). Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering, 9, 415–447.
Finardi, U. (2015). Scientific collaboration between BRICS countries. Scientometrics, 102(2), 1139–1166.
Fisher, M. R., Forfia, P. R., Chamera, E., Housten-Harris, T., Champion, H. C., Girgis, R. E., et al. (2009). Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 179(7), 615–621.
Fu, H. Z., Long, X., & Ho, Y. S. (2014). China’s research in chemical engineering journals in Science Citation Index Expanded: A bibliometric analysis. Scientometrics, 98(1), 119–136.
Gao, W., Chen, Y., Liu, Y., & Guo, H. (2015). Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics, 102(3), 1951–1964.
Gao, Z., Kennedy, A. M., Christensen, D. A., & Rapoport, N. Y. (2008). Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 48(4), 260–270.
Garfield, E. (1990). Key-words-plus takes you beyond title words. 2. Expanded journal coverage for current-contents-on-diskette includes social and behavioral-sciences. Current Contents, 33, 5–9.
Hernot, S., & Klibanov, A. L. (2008). Microbubbles in ultrasound-triggered drug and gene delivery. Advanced Drug Delivery Reviews, 60(10), 1153–1166.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.
Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 19193–19198.
Hou, Q., Mao, G., Zhao, L., Du, H., & Zuo, J. (2015). Mapping the scientific research on life cycle assessment: A bibliometric analysis. The International Journal of Life Cycle Assessment, 20(4), 541–555.
Invernizzi, N., Foladori, G., Robles-Belmont, E., Lau, E. Z., Figueroa, E. A., Bagattolli, C., et al. (2015). Nanotechnology for social needs: Contributions from Latin American research in the areas of health, energy and water. Journal of Nanoparticle Research, 17(5), 1–19.
Jiang, L., Wong, M., & Zohar, Y. (1999). Phase change in microchannel heat sinks with integrated temperature sensors. Journal of Microelectromechanical Systems, 8(4), 358–365.
Karpagam, R. (2014). Global research output of nanobiotechnology research: A scientometrics study. Current Science, 106(11), 1490.
Kiessling, F., Fokong, S., Koczera, P., Lederle, W., & Lammers, T. (2012). Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. Journal of Nuclear Medicine, 53(3), 345–348.
Kinoshita, M., & Hynynen, K. (2005a). A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochemical and Biophysical Research Communications, 335(2), 393–399.
Kinoshita, M., & Hynynen, K. (2005b). Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharmaceutical Research, 22(5), 716–720.
Klibanov, A. L. (2006). Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investigative Radiology, 41(3), 354–362.
Koike, H., Tomita, N., Azuma, H., Taniyama, Y., Yamasaki, K., Kunugiza, Y., et al. (2005). An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. The Journal of Gene Medicine, 7(1), 108–116.
Lee, M., Lee, E. Y., Lee, D., & Park, B. J. (2015). Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials. Soft Matter, 11(11), 2067–2079.
Levy, N., Burke, S. A., Meaker, K. L., Panlasigui, M., Zettl, A., Guinea, F., et al. (2010). Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science, 329(5991), 544–547.
Li, P., & Tsuge, H. (2006). Water treatment by induced air flotation using microbubbles. Journal of Chemical Engineering of Japan, 39(8), 896–903.
Li, W., & Zhao, Y. (2015). Bibliometric analysis of global environmental assessment research in a 20-year period. Environmental Impact Assessment Review, 50, 158–166.
Lomonaco, R., Sunny, N. E., Bril, F., & Cusi, K. (2013). Nonalcoholic fatty liver disease: Current issues and novel treatment approaches. Drugs, 73(1), 1–14.
Mao, G., Liu, X., Du, H., Zuo, J., & Wang, L. (2015). Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renewable and Sustainable Energy Reviews, 48, 276–286.
Mao, N., Wang, M., & Ho, Y. (2010). A bibliometric study of the trend in articles related to risk assessment published in Science Citation Index. Human and Ecological Risk Assessment, 16(4), 801–824.
McDannold, N., Arvanitis, C. D., Vykhodtseva, N., & Livingstone, M. S. (2012). Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques. Cancer Research, 72(14), 3652–3663.
Meairs, S. (2013). Drug delivery across the blood–brain barrier with focused ultrasound and microbubbles. In The Blood Brain Barrier (BBB) (pp. 143–158). Berlin/Heidelberg: Springer.
Narsinh, K., Narsinh, K. H., & Wu, J. C. (2011). Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circulation Research, 108(9), 1146–1156.
Neethirajan, S., Kobayashi, I., Nakajima, M., Wu, D., Nandagopal, S., & Lin, F. (2011). Microfluidics for food, agriculture and biosystems industries. Lab on a Chip, 11(9), 1574–1586.
Niu, B. B., Hong, S., Yuan, J. F., Peng, S., Wang, Z., & Zhang, X. (2014). Global trends in sediment-related research in earth science during 1992–2011: A bibliometric analysis. Scientometrics, 98(1), 511–529.
Persson, O. (1994). The intellectual base and research fronts of JASIS 1986–1990. Journal of the American Society for Information Science, 45(1), 31–38.
Persson, O., Danell, R., & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. In Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th birthday (pp. 9–24).
Piscaglia, F., Nolsøe, C., Dietrich, C. A., Cosgrove, D. O., Gilja, O. H., Bachmann Nielsen, M., et al. (2012). The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): Update 2011 on non-hepatic applications. Ultraschall in der Medizin, 33(1), 33.
Postema, M., Van Wamel, A., Lancée, C. T., & De Jong, N. (2004). Ultrasound-induced encapsulated microbubble phenomena. Ultrasound in Medicine and Biology, 30(6), 827–840.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.
Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C., & Gordillo, J. M. (2015). Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 47, 405–429.
Sassaroli, E., & Hynynen, K. (2007). Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound in Medicine and Biology, 33(10), 1651–1660.
Sato, K. (2011). Recent patents on micro-and nano-bubble applications and potential application of a swirl-type generator. Recent Patents on Mechanical Engineering, 4(3), 202–211.
Sebba, F. (1971). Microfoams-an unexploited colloid system. Journal of Colloid and Interface Science, 35(4), 643–646.
Sirsi, S. R., & Borden, M. A. (2012). Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics, 2(12), 1208.
Staub, F., Tournoux-Facon, C., Roumy, J., Chaigneau, C., Morichaut-Beauchant, M., Levillain, P., et al. (2009). Liver fibrosis staging with contrast-enhanced ultrasonography: Prospective multicenter study compared with METAVIR scoring. European Radiology, 19(8), 1991–1997.
Suslick, K. S., Grinstaff, M. W., Kolbeck, K. J., & Wong, M. (1994). Characterization of sonochemically prepared proteinaceous microspheres. Ultrasonics Sonochemistry, 1(1), S65–S68.
Terekhov, A. I. (2015). R&D on carbon nanostructures in Russia: scientometric analysis, 1990-2011. Journal of Nanoparticle Research, 17(2), 1–26.
Thomson Reuters. (2015). Quartiles in JCR on the InCites platform. http://ipscience-help.thomsonreuters.com/incitesLiveJCR/JCRGroup/jcrJournalProfile/jcrJournalProfileRank.html.
Ting, C., Fan, C., Liu, H., Huang, C., Hsieh, H., Yen, T., et al. (2012). Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials, 33(2), 704–712.
Unger, E., Porter, T., Lindner, J., & Grayburn, P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Advanced Drug Delivery Reviews, 72, 110–126.
Unnikrishnan, S., & Klibanov, A. L. (2012). Microbubbles as ultrasound contrast agents for molecular imaging: Preparation and application. American Journal of Roentgenology, 199(2), 292–299.
Wang, M., Liu, D., Jia, J., & Zhang, X. (2015). Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 65(6), 483–495.
Wang, J., Wang, J., Chen, H., Zhang, C., Liu, L., Pan, S., & Wu, C. (2008). Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Advances in Therapy, 25(5), 412–421.
Wang, L., Wang, Q., Zhang, X., Cai, W., & Sun, X. (2013). A bibliometric analysis of anaerobic digestion for methane research during the period 1994-2011. Journal of Material Cycles and Waste Management, 15(1), 1–8.
Wei, K., Jayaweera, A. R., Firoozan, S., Linka, A., Skyba, D. M., & Kaul, S. (1998). Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation, 97(5), 473–483.
Xu, J. L., Cheng, P., & Zhao, T. S. (1999). Gas–liquid two-phase flow regimes in rectangular channels with mini/micro gaps. International Journal of Multiphase Flow, 25(3), 411–432.
Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., & Shiina, T. (2008). A comparative study of microbubble generation by mechanical agitation and sonication. Innovative Food Science and Emerging Technologies, 9(4), 489–494.
Xu, Q., Nakajima, M., Liu, Z., & Shiina, T. (2011). Biosurfactants for microbubble preparation and application. International Journal of Molecular Sciences, 12(1), 462–475.
Yu, Q., Shao, H., & Duan, Z. (2011). Research groups of oncology co-authorship network in China. Scientometrics, 89(2), 553–567.
Zhai, L., Pan, Y., Guo, Y., Ma, Z., & Bi, F. (2014). International comparative study on nanofiltration membrane technology based on relevant publications and patents. Scientometrics, 101(2), 1361–1374.
Zhang, C., Cao, H., Li, Q., Tu, J., Guo, X., Liu, Z., & Zhang, D. (2013). Enhancement effect of ultrasound-induced microbubble cavitation on branched polyethylenimine-mediated VEGF165 transfection with varied N/P ratio. Ultrasound in Medicine and Biology, 39(1), 161–171.
Zheng, T., Wang, J., Wang, Q., Meng, H., & Wang, L. (2015a). Research trends in electrochemical technology for water and wastewater treatment. Applied Water Science,. doi:10.1007/s13201-015-0280-4.
Zheng, T., Wang, J., Wang, Q., Nie, C., Smale, N., Shi, Z., & Wang, X. (2015b). A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics, 105(2), 863–882.
Zheng, T., Wang, Q., Shi, Z., Huang, P., Li, J., Zhang, J., & Wang, J. (2015c). Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation. Separation Science and Technology, 50(16), 2568–2577.
Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., et al. (2015d). Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials, 287, 412–420.
Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading nation in science. Research Policy, 35(1), 83–104.
Acknowledgments
The authors gratefully acknowledge the financial support of the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201002-6).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zheng, T., Wang, J., Wang, Q. et al. A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects. Scientometrics 109, 53–71 (2016). https://doi.org/10.1007/s11192-016-2004-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-016-2004-4