Skip to main content
Log in

Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

With the rise in new energy industries, electrochemical energy storage, which plays an important supporting role, has attracted extensive attention from researchers all over the world. To trace the electrochemical energy storage development history, determine the research theme and evolution path, and predict the future development directions, this paper will use CitNetExplorer to draw citation chronology charts and study the development trends in this field by analysing data downloaded from the Web of Science database. The results indicate that the research in this field originated from the study on energy storage materials and gradually divided into two major fields: energy storage materials and applications after 2000. The research on the energy storage materials refers to activated carbon materials, carbon nanotubes, graphene, and mesoporous carbon materials. Energy storage applications mainly focus on power systems, new energy vehicles, and wind farm dispatch. For research on electrochemical energy storage materials, the industrialization of graphene may become a new trending topic, and the application research will turn to the construction of energy Internet systems in the future. This paper will provide a full map for the development of electrochemical energy storage and forecast the future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amatucci, G. G., Badway, F., Pasquier, A. D., et al. (2001). An asymmetric hybrid nonaqueous energy storage cell. Journal of the Electrochemical Society, 148(8), A930–A939.

    Article  Google Scholar 

  • Arulampalam, A., Barnes, M., Jenkins, N., et al. (2006). Power quality and stability improvement of a wind farm using STATCOM supported with hybrid battery energy storage. IEE Proceedings-Generation, Transmission and Distribution, 153(6), 701–710.

    Article  Google Scholar 

  • Avila-Robinson, A., & Islam, N. (2015). Evolution of emerging iPS cell-based therapies for age-related macular degeneration (AMD). In IEEE Portland international conference on management of engineering and technology.

  • Beidaghi, M. (2014). Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Sciences, 7(3), 867–884.

    Article  Google Scholar 

  • Brekken, T. K. A., Yokochi, A., Von Jouanne, A., et al. (2011). Optimal energy storage sizing and control for wind power applications. IEEE Transactions on Sustainable Energy, 2(1), 69–77.

    Google Scholar 

  • Brousse, T., Marchand, R., Taberna, P. L., et al. (2006). TiO2(B)/activated carbon non-aqueous hybrid system for energy storage. Journal of Power Sources, 158(1), 571–577.

    Article  Google Scholar 

  • Cao, Z. Y., & Wei, B. Q. (2013). A perspective: Carbon nanotube macro-films for energy storage. Energy & Environmental Science, 6(11), 3183–3201.

    Article  Google Scholar 

  • Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), 593–608.

    Article  Google Scholar 

  • Chen, H. S., Cong, T. N., Yang, W., et al. (2009a). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19(3), 291–312.

    Article  Google Scholar 

  • Chen, Z., Qin, Y. C., Weng, D., et al. (2009b). Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Advanced Functional Materials, 19(21), 3420–3426.

    Article  Google Scholar 

  • Chu, J. W., & Qian, Q. (2014). Analysis of research focus and research methods in the field of knowledge management during the past decade. Information Science, 32(10), 156–160.

    Google Scholar 

  • Conway, B. E. (1991). Transition from supercapacitor to battery behavior in electrochemical energy storage. Journal of the Electrochemical Society, 138(6), 1539–1548.

    Article  Google Scholar 

  • Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66(1–2), 1–14.

    Article  Google Scholar 

  • Cruz, S. C., & Teixeira, A. A. (2010). The evolution of the cluster literature: Shedding light on the regional studies–regional science debate. Regional Studies, 44(9), 1263–1288.

    Article  Google Scholar 

  • Dell, R. M., & Rand, D. A. J. (2001). Energy storage—A key technology for global energy sustainability. Journal of Power Sources, 100(1–2), 2–17.

    Article  Google Scholar 

  • Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., et al. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154–2171.

    Article  Google Scholar 

  • Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems—An overview. Electric Power Systems Research, 79(4), 511–520.

    Article  Google Scholar 

  • Du Pasquier, A., Laforgue, A., Simon, P., et al. (2002). A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device. Journal of the Electrochemical Society, 149(3), A302–A306.

    Article  Google Scholar 

  • Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935.

    Article  Google Scholar 

  • Elango, B., Bornmann, L., & Shankar, S. (2014). Study of citation networks in tribology research. Eprint Arxiv.

  • Feng, C. Y. (2015). The social media citation contexts analysis based on histcite. Research on Library Science, 5, 22–29.

    Google Scholar 

  • Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30, 119–145.

    Article  Google Scholar 

  • Garfield, E., Pudovkin, A. I., & Istomin, V. S. (2003a). Why do we need algorithmic historiography? Journal of the American Society for Information Science and Technology, 54, 400–412.

    Article  Google Scholar 

  • Garfield, E., Pudovkin, A. I., & Istomin, V. I. (2003b). Mapping the output of topical searches in the Web of knowledge and the case of Watson–Crick. Information Technology and Libraries, 22, 183–187.

    Google Scholar 

  • Gogotsi, Y., & Simon, P. (2011). True performance metrics in electrochemical energy storage. Science, 334(6058), 917–918.

    Article  Google Scholar 

  • Hall, P. J., Mirzaeian, M., Fletcher, S. I., et al. (2010). Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy & Environmental Science, 3(9), 1238–1251.

    Article  Google Scholar 

  • Han, Y., & Jin, B. H. (2012). Main path analysis: A new perspective to structural analysis of citation Jae-network based on connectivity. Studies in Science of Science, 30(11), 1634–1640.

    Google Scholar 

  • Hu, L., Choi, J. W., Yang, Y., et al. (2009). Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21490–21494.

    Article  Google Scholar 

  • Ibrahim, H., IIinca, A., & Perron, J. (2008). Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 12(5), 1221–1250.

    Article  Google Scholar 

  • Jia, L. L., Liu, P., & Zhang, W. H. (2014). Research progress of electrochemical technology of energy storage. Chinese Journal of Power Sources, 10, 1972–1974.

    Google Scholar 

  • Jiang, J., Li, Y. Y., Liu, J. P., et al. (2012). Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced Materials, 24(38), 5166–5180.

    Article  Google Scholar 

  • Jost, K., Perez, C. R., Mcdonough, J. K., et al. (2011). Carbon coated textiles for flexible energy storage. Energy & Environmental Science, 4(12), 5060–5067.

    Article  Google Scholar 

  • Khadiran, T., Hussein, M. Z., Zainal, Z., et al. (2016). Advanced energy storage materials for building applications and their thermal performance characterization: A review. Renewable and Sustainable Energy Reviews, 57, 916–928.

    Article  Google Scholar 

  • Khaligh, A., & Li, Z. H. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814.

    Article  Google Scholar 

  • Kim, J. H., Lee, K. H., Overzet, L. J., et al. (2011). Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Letters, 11(7), 2611–2617.

    Article  Google Scholar 

  • Kleinberg, J. (2003). Bursty and hierarchical structure in streams. In Proceedings of the eighth ACM Lei SIGKDD international conference on knowledge discovery and data mining (pp. 373–397). ACM.

  • Kondoh, J., Ishii, I., Yamaguchi, H., et al. (2000). Electrical energy storage systems for energy networks. Energy Conversion and Management, 41(17), 1863–1874.

    Article  Google Scholar 

  • Lei, H. Z. (2008). Appling information entropy to quantitative analysis on competitive intelligence. Journal of Information, 5, 73–75.

    Google Scholar 

  • Li, Q., Choi, S. S., Yuan, Y., et al. (2011). On the determination of battery energy storage capacity and short-term power dispatch of a wind farm. IEEE Transactions on Sustainable Energy, 2(2), 148–158.

    Article  Google Scholar 

  • Li, H. Z., Duan, J. M., & Wang, C. M. (2012). Battery energy storage technologies and Valuation in smart grid. Beijing: China Machine Press.

    Google Scholar 

  • Liu, C., Li, F., Ma, L., et al. (2010). Advanced materials for energy storage. Advanced Materials, 22(8), 28–62.

    Article  Google Scholar 

  • Liu, R., Duay, J., & Lee, S. B. (2011). Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications, 47(5), 1384–1404.

    Article  Google Scholar 

  • Liu, S. N., Su, W., & Wei, Z. F. (2013). Application effect evaluation of the chemical energy storage battery in electric power system. Renewable Energy Resources, 31(1), 105–108.

    Google Scholar 

  • Lu, L. Y. Y., & Liu, J. S. (2016). A novel approach to identify the major research themes and development trajectory: The case of patenting research. Technological Forecasting and Social Change, 103, 71–82.

    Article  Google Scholar 

  • Lukic, S. M., Cao, J., Bansal, R. C., et al. (2008). Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics, 55(6), 2258–2267.

    Article  Google Scholar 

  • Luo, X., Wang, J., Dooner, M., et al. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137(C), 511–536.

    Article  Google Scholar 

  • Min, S., Hoe, G. E., & Su, Y. K. (2014). Analyzing topic evolution in bioinformatics: Investigation of dynamics of the field with conference data in DBLP. Scientometrics, 101(1), 397–428.

    Article  Google Scholar 

  • Nyholm, L., Nyström, G., Mihranyan, A., et al. (2011). Toward flexible polymer and paper-based energy storage devices. Advanced Materials, 23(33), 3751–3769.

    Google Scholar 

  • Posada, J. O. G., & Hall, P. J. (2016). Towards the development of safe and commercially viable nickel–iron batteries: Improvements to Coulombic efficiency at high iron sulphide electrode formulations. Journal of Applied Electrochemistry, 46(4), 451–458.

    Article  Google Scholar 

  • Pushparaj, V. L., Shaijumon, M. M., Kumar, A., et al. (2007). Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13574–13577.

    Article  Google Scholar 

  • Ribeiro, P. F., Johnson, B. K., Crow, M. L., et al. (2001). Energy storage systems for advanced power applications. Proceedings of the IEEE, 89(12), 1744–1756.

    Article  Google Scholar 

  • Rolison, D. R., & Nazar, L. F. (2011). Electrochemical energy storage to power the 21st century. MRS Bulletin, 36(7), 486–493.

    Article  Google Scholar 

  • Simon, P., & Gogotsi, Y. (2013). Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts of Chemical Research, 46(5), 1094–1103.

    Article  Google Scholar 

  • Soloveichik, G. L. (2011). Battery technologies for large-scale stationary energy storage. Annual Review of Chemical & Biomolecular Engineering, 2, 503–527.

    Article  Google Scholar 

  • Suberu, M. Y., Mustafa, M. W., & Bashir, N. (2014). Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, 35, 499–514.

    Article  Google Scholar 

  • Sun, Y. T., & Grimes, S. (2015). the emerging dynamic structure of national innovation studies: A bibliometric analysis. Scientometrics, 99(1), 1–24.

    Google Scholar 

  • Teleke, S., Baran, M. E., Bhattacharya, S., et al. (2010). Optimal control of battery energy storage for wind farm dispatching. IEEE Transactions on Energy Conversion, 25(3), 787–794.

    Article  Google Scholar 

  • Teleke, S., Baran, M. E., Huang, A. Q., et al. (2009). Control strategies for battery energy storage for wind farm dispatching. Energy Conversion IEEE Transactions, 24(3), 725–732.

    Article  Google Scholar 

  • Tong, Z. Y. (2015). The hotspot and trend research on Library knowledge management based on word frequency analysis. Journal of Library Science, 3, 130–132.

    Google Scholar 

  • Tramarico, C. L., DanieleMizuno, Salomon. V. A. P., et al. (2015). Analytic hierarchy process and supply chain management: A bibliometric study. Procedia Computer Science, 55, 441–450.

    Article  Google Scholar 

  • van Eck, N. I., & Waltman, L. (2014a). CitNetExplorer: A new software tool for analyzing and visualizing citation networks. Journal of Informetrics, 8(4), 802–823.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2014b). Getting started wuth CitNetExplorer version 1.0.0. http://www.citnetexplorer.nl/Getting-Started. Accessed March 15, 2014.

  • Vazquez, S., Lukic, S. M., Galvan, E., et al. (2010). Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics, 57(12), 3881–3895.

    Article  Google Scholar 

  • Wang, B., Liu, S. B., Ding, K., et al. (2015a). Patent content analysis method based on LDA topic model. Science Research Management, 36(3), 111–117.

    Google Scholar 

  • Wang, D. H., Kou, R., Choi, D., et al. (2010). Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano, 4(3), 1587–1595.

    Article  Google Scholar 

  • Wang, D. W., Fang, H. T., Li, F., et al. (2008a). Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Advanced Functional Materials, 18(23), 3787–3793.

    Article  Google Scholar 

  • Wang, D. W., Li, F., Liu, M., et al. (2008b). 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie, 47(2), 373–376.

    Article  Google Scholar 

  • Wang, P. (2014). Discovery and evolution of the literature based on the hierarchical probabilistic topic model. Library and Information Service, 58(22), 70–76.

    Google Scholar 

  • Wang, X., Cheng, Q., & Lu, W. (2014a). Analyzing evolution of research topics with NEViewer: A new method based on dynamic co-word networks. Scientometrics, 101(2), 1253–1271.

    Article  Google Scholar 

  • Wang, X. F., Xihong, L., Bin, L., et al. (2014b). Flexible energy-storage devices: Design consideration and recent progress. Advanced Materials, 26(28), 4763–4782.

    Article  Google Scholar 

  • Wang, X. L., Zhang, Y., & Zhang, H. (2015b). Latest progresses in vanadium flow battery technologies and applications. Journal of Electrochemistry, 21(5), 433–440.

    Google Scholar 

  • Whitacre, J. F., Tevar, A., & Sharma, S. (2010). Na4Mn9O18, as a positive electrode material for an aqueous electrolyte sodium–ion energy storage device. Electrochemistry Communications, 12(3), 463–466.

    Article  Google Scholar 

  • Wu, F. F., Duan, G. H., et al. (2014). Citation analysis on current science publications: 3D print research topics. Journal of Intelligence, 33(12), 64–70.

    Google Scholar 

  • Xie, H. N. (2014). Comprehensive analysis on electrochemical energy storage mode and energy storage materials. Smart Grid, 2(7), 4–8.

    Google Scholar 

  • Xu, S. (2010). The research trend on drug therapy for systemic inflammatory response syndrome based on burst detection. Shenyang: China Medical University.

    Google Scholar 

  • Xu, C. H., Xu, B. H., Gu, Y., et al. (2013). Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 6(5), 1388–1414.

    Article  Google Scholar 

  • Yang, X. W., Cheng, C., Wang, Y. F., et al. (2013). Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 341(6145), 534–537.

    Article  Google Scholar 

  • Yang, Z., Shen, C., Zhang, L., et al. (2001). Integration of a StatCom and battery energy storage. IEEE Power Engineering Review, 21(5), 63.

    Article  Google Scholar 

  • Yang, Z. G., Zhang, J. L., Kintner-Meyer, M. C. W., et al. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111(5), 3577–3613.

    Article  Google Scholar 

  • Yao, D. L., Choi, S. S., Tseng, K. J., et al. (2012). Determination of short-term power dispatch schedule for a wind farm incorporated with dual-battery energy storage scheme. IEEE Transactions on Sustainable Energy, 3(1), 74–84.

    Article  Google Scholar 

  • Yuan, L. Y., Yao, B., Hu, B., et al. (2013). Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 6(2), 470–476.

    Article  Google Scholar 

  • Zhai, Y. P., Dou, Y. Q., Zhao, D. Y., et al. (2011). Carbon materials for chemical capacitive energy storage. Advanced Materials, 23(42), 4828–4850.

    Article  Google Scholar 

  • Zhang, H., Cao, G. P., Wang, Z. Y., et al. (2008). Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Letters, 8(9), 2664–2668.

    Article  Google Scholar 

  • Zhang, J., & Dai, W. Y. (2015). Overview of international roadmap studies on energy storage technologies. Energy Storage Science and Technology, 4(3), 260–266.

    Google Scholar 

  • Zhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C. N. (2015). Review of energy storage system for wind power integration support. Applied Energy, 137, 545–553.

    Article  Google Scholar 

  • Zhao, X., Hayner, C. M., Kung, M. C., et al. (2011a). Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 5(11), 8739–8749.

    Article  Google Scholar 

  • Zhao, X., Sánchez, B. M., Dobson, P. J., et al. (2011b). The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 3(3), 839–855.

    Article  Google Scholar 

  • Zhu, Q. S., Leng F. H. (2014). Analysis of topic evolution based on co-citation of documents on the main citation path. Journal of the China Society for Scientific and Technical Information, 33(5), 498–506.

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive comments and suggestions. This paper is supported by the National Social Science Foundation of China (Grant 11&ZD140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyu Li.

Appendix: The related journals on electrochemical energy storage covered in WoS

Appendix: The related journals on electrochemical energy storage covered in WoS

In term of electrochemical energy storage, WoS covers the leading Journals in this field compared to other databases. The following is the Top 30 Journals content retrieved in WoS.

Source of publications

Percent of 2710 (%)

Source of publications

Percent of 2710 (%)

Journal of Power Sources

5.558

Chemical Communications

0.862

Journal of Materials Chemistry A

4.408

Physical Chemistry Chemical Physics

0.815

Electrochimica Acta

3.258

Angewandte Chemie International Edition

0.815

RSC Advances

3.115

Electric Power Systems Research

0.767

Energy Environmental Science

2.444

Carbon

0.767

Applied Energy

2.444

Chemistry of Materials

0.719

Journal of the Electrochemical Society

2.06

Chemsuschem

0.671

Nanoscale

1.485

Chemical Society Reviews

0.623

International Journal of Hydrogen Energy

1.485

Small

0.575

Energy Conversion and Management

1.485

Materials Letters

0.527

Advanced Materials

1.437

Journal of Power Electronics

0.527

International Journal of Electrical Power Energy Systems

1.39

Electrochemistry Communications

0.527

Renewable Energy

1.246

Nature communications

0.479

ACS Nano

1.246

Nanotechnology

0.479

Energies

1.198

Journal of the American Chemical Society

0.479

ACS Applied Materials Interfaces

1.198

Journal of Renewable and Sustainable Energy

0.479

Renewable Sustainable Energy Reviews

1.054

Journal of Physical Chemistry Letters

0.479

Journal of Materials Chemistry

1.054

Journal of Alloys and Compounds

0.479

Nano Energy

0.958

International Journal of Energy Research

0.479

Journal of Physical Chemistry C

0.958

Przeglad Elektrotechniczny

0.431

Energy

0.958

Proceedings of the IEEE

0.431

Advanced Functional Materials

0.958

International Journal of Electrochemical Science

0.431

Scientific Reports

0.91

IET Renewable Power Generation

0.431

Nano Letters

0.91

Dalton Transactions

0.431

Advanced Energy Materials

0.91

Solar Energy

0.383

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Li, R., Huang, L. et al. Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer. Scientometrics 110, 113–139 (2017). https://doi.org/10.1007/s11192-016-2164-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2164-2

Keywords

Navigation