Abstract
Development of accurate systems to assess academic research performance is an essential topic in national science agendas around the world. Providing quantitative elements such as scientometric rankings and indicators have contributed to measure prestige and excellence of universities, but more sophisticated computational tools are seldom exploited. We compare the evolution of Mexican scientific production in Scopus and the Web of Science as well as Mexico’s scientific productivity in relation to the growth of the National Researchers System of Mexico is analyzed. As a main analysis tool we introduce an artificial intelligence procedure based on self-organizing neural networks. The neural network technique proves to be a worthy scientometric data mining and visualization tool which automatically carries out multiparametric scientometric characterizations of the production profiles of the 50 most productive Mexican Higher Education Institutions (in Scopus database). With this procedure we automatically identify and visually depict clusters of institutions that share similar bibliometric profiles in bidimensional maps. Four perspectives were represented in scientometric maps: productivity, impact, expected visibility and excellence. Since each cluster of institutions represents a bibliometric pattern of institutional performance, the neural network helps locate various bibliometric profiles of academic production, and the identification of groups of institutions which have similar patterns of performance. Also, scientometric maps allow for the identification of atypical behaviors (outliers) which are difficult to identify with classical tools, since they outstand not because of a disparate value in just one variable, but due to an uncommon combination of a set of indicators values.









Similar content being viewed by others
References
Abramo, G., Cicero, T., & D’Angelo, C. A. (2013). National peer-review research assessment exercises for the hard sciences can be a complete waste of money: The Italian case. Scientometrics, 95(1), 311–324.
Aguillo, I. F., Bar-Ilan, J., Levene, M., & Ortega, J. L. (2010). Comparing university rankings. Scientometrics, 85(1), 243–256.
Aguillo, I. F., Granadino, B., & Llamas, G. (2005). Web positioning of the university system in Latin America. Interciencia, 30(12), 735–738.
Allen, N., & Heath, O. (2013). Reputations and research quality in british political science: The importance of journal and publisher rankings in the 2008 RAE. British Journal of Politics & International Relations, 15(1), 147–162.
Arencibia-Jorge, R., & de Moya-Anegon, F. (2010). Challenges in the study of Cuban scientific output. Scientometrics, 83(3), 723–737.
Arvanitis, R., Russell, J. M., & Rosas, A. M. (1996). Experiences with the national citation reports database for measuring national performance: The case of Mexico. Scientometrics, 35(2), 247–255.
Belkhodja, O., & Landry, R. (2007). The Triple-helix collaboration: Why do researchers collaborate with industry and the government? What are the factors that influence the perceived barriers? Scientometrics, 70(2), 301–332.
Belter, C. W. (2013). A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research. Scientometrics, 95(2), 629–644.
Bengoetxea, E., & Buela-Casal, G. (2013). The new multidimensional and user-driven higher education ranking concept of the European Union. International Journal of Clinical and Health Psychology, 13(1), 67–73.
Benito, M., & Romera, R. (2011). Improving quality assessment of composite indicators in university rankings: A case study of French and German universities of excellence. Scientometrics, 89(1), 153–176.
Billaut, J. C., Bouyssou, D., & Vincke, P. (2010). Should you believe in the Shanghai ranking? Scientometrics, 84(1), 237–263.
Bornmann, L., & Leydesdorff, L. (2013). Macro-indicators of citation impacts of six prolific countries: InCites data and the statistical significance of trends. PLoS ONE, 8(2), e56768.
Bornmann, L., Moya-Anegón, F., & Leydesdorff, L. (2012). The new excellence indicator in the World Report of the SCImago Institutions Rankings 2011. Journal of Informetrics, 6(2), 333–335.
Caputo, C., Requena, J., & Vargas, D. (2012). Life sciences research in Venezuela. Scientometrics, 90(3), 781–805.
Collazo-Reyes, F., Luna-Morales, M. E., Russell, J. M., & Perez-Angon, M. A. (2008). Publication and citation patterns of Latin American and Caribbean journals in the SCI and SSCI from 1995 to 2004. Scientometrics, 75(1), 145–161.
Collazo-Reyes, F., Luna-Morales, M. E., Russell, J. M., & Perez-Angon, M. A. (2010). Enriching knowledge production patterns of Mexican physics in particles and fields. Scientometrics, 85(3), 791–802.
CONACyT. (2012). Atlas de la Ciencia Mexicana. Mexico D.F: Academia Mexicana de Ciencias.
CONACyT. (2013). Resultados Anteriores del Sistema Nacionales de Investigadores (SNI). http://conacyt.gob.mx/index.php/resultados-anteriores.
Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.
Egghe, L. (2012). Averages of ratios compared to ratios of averages: Mathematical results. Journal of Informetrics, 6(2), 307–317.
Foro Consultivo Científico y Tecnológico. (2011). Ranking de Producción Científica Mexicana. http://www.foroconsultivo.org.mx/libros_editados/ranking_por_institucion_2011.pdf.
Gomez-Nunez, A. J., Vargas-Quesada, B., de Moya-Anegon, F., & Glanzel, W. (2011). Improving SCImago Journal and Country Rank (SJR) subject classification through reference analysis. Scientometrics, 89(3), 741–758.
Guzmán, M. V., Carrillo, H., Jiménez, J. L., & Villaseñor, E. A. (2010). Bioinformetric studies on TB vaccines research. In: N. M. Nor, A. Acosta & M. E. Sarmiento (eds.), The art and science of Tuberculosis vaccine development (pp. 425–441). Oxford: Oxford University Press.
Helene, A. F., & Ribeiro, P. L. (2011). Brazilian scientific production, financial support, established investigators and doctoral graduates. Scientometrics, 89(2), 677–686.
Huang, M. H. (2012). Exploring the h-index at the institutional level: A practical application in world university rankings. Online Information Review, 36(4), 534–547.
Ioannidis, J. P., Patsopoulos, N. A., Kavvoura, F. K., Tatsioni, A., Evangelou, E., Kouri, I., et al. (2007). International ranking systems for universities and institutions: A critical appraisal. BMC Medicine, 5(30), 1.
Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.
Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52–65.
Krauskopf, M., Krauskopf, E., & Mendez, B. (2007). Low awareness of the link between science and innovation affects public policies in developing countries: The Chilean case. Scientometrics, 72(1), 93–103.
Krishna, D., Mohan, S. R., Murthy, B. S. N., & Rao, A. R. (2002). Performance evaluation of public research institutes using principal component analysis. Journal of Scientific & Industrial Research, 61(11), 940–947.
Kurzydlowski, K. J. (2003). Materials research in Poland. In W. Lojkowski & J. R. Blizzard (Eds.), Interfacial effects and novel properties of nanomaterials (pp. 349–356). Zurich-Uetikon: Trans Tech Publications Ltd.
Lena, M. (1997). Scientific productivity in environmental psychology in Mexico—A bibliometric analysis. Environment and Behavior, 29(2), 169–197.
Leydesdorff, L., & Meyer, M. (2007). The scientometrics of a Triple Helix of university–industry–government relations (introduction to the topical issue). Scientometrics, 70(2), 207–222.
Licea de Arenas, J., Castanos-Lomnitz, H., & Arenas-Licea, J. (2002). Significant Mexican research in the health sciences: A bibliometric analysis. Scientometrics, 53(1), 39–48.
Licea de Arenas, J., Valles, J., & Arenas, M. (2000). Educational research in Mexico: Socio-demographic and visibility issues. Educational Research, 42(1), 85–90.
Luna-Morales, M. E. (2012). International scientific collaboration and recognition of Mexican science from 1980 to 2004. Investigacion Bibliotecologica, 26(57), 103–129.
Macias-Chapula, C. A., Mendoza-Guerrero, J. A., Rodea-Castro, I. P., & Gutierrez-Carrasco, A. (2007). Institutional health research collaboration in Mexico: A Bibliometric study. In: Proceedings of the 11th international conference of the international society for scientometrics and informetrics (pp. 894–895). Madrid: ISSI.
Miguel, S., Chinchilla-Rodríguez, Z., & Moya-Anegón, F. (2011). Open access and Scopus: A new approach to scientific from the standpoint of access. Journal of the American Society for Information Science and Technology, 62(6), 1130–1145.
Miguel, S., Moya-Anegon, F., & Herrero-Solana, V. (2010). The impact of the socio-economic crisis of 2001 on the scientific system of Argentina from the scientometric perspective. Scientometrics, 85(2), 495–507.
Moya-Anegón, F., Herrero-Solana, V., & Jiménez-Contreras, E. (2006). A connectionist and multivariate approach to science maps: The SOM, clustering and MDS applied to library and information science research. Journal of Information Science, 32(1), 63–77.
Mryglod, O., Kenna, R., Holovatch, Y., & Berche, B. (2013). Absolute and specific measures of research group excellence. Scientometrics, 95(1), 115–127.
Noyons, C. M. (2005). Science maps within a science policy context. In: H. F. Moed, W. Glänzel & U. Schmoch (eds.), Handbook of quantitative science and technology research (pp. 237–255). Springer: Netherlands.
Polanco, X., François, C., & Lamirel, J. C. (2001). Using artificial neural networks for mapping of science and technology: A multi-self-organizing-maps approach. Scientometrics, 51(1), 267–292.
Rehn, C., & Kronman, U. (2008). Bibliometric handbook for Karolinska Institutet. Estocolmo: Karolinska Institutet University Library.
SCImago Research Group. (2013). SIR Iber 2013. http://www.scimagoir.com/pdf/SIR%20Iber%202013.pdf.
Sierra-Flores, M. M., & Barnard, J. M. R. (2009). The most productive research groups of the National Autonomous University of Mexico (UNAM) in the area of physics, 1990–1999. Investigacion Bibliotecologica, 23(48), 127–155.
Sierra-Flores, M. M., Guzman, M. V., Raga, A. C., & Perez, I. (2009). The productivity of Mexican astronomers in the field of outflows from young stars. Scientometrics, 81(3), 765–777.
Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the topical structure of the medical sciences: A self-organizing map approach. PLoS ONE, 8(3), e58779.
Sotolongo-Aguilar, G., Guzmán-Sánchez, M. V., & Carrillo-Calvet, H. (2002). ViBlioSOM: Visualización de información bibliométrica mediante el mapeo autoorganizado. Revista Española de Documentación Científica, 25(4), 477–484.
Sotolongo-Aguilar, G., Guzmán-Sánchez, M. V., Saavedra-Fernández, O., Carrillo-Calvet, H. A. (2001). Mining informetric data with self-organizing maps. In Proceedings of the 8th international society for scientometrics and informetrics (pp. 665–673). Sydney: BIRG.
Statzner, B., & Resh, V. H. (2010). Negative changes in the scientific publication process in ecology: potential causes and consequences. Freshwater Biology, 55(12), 2639–2653.
Thomson Reuters. (2015). http://incites.isiknowledge.com/common/help/h_glossary.html.
Torres-Salinas, D., Moreno-Torres, J. G., Delgado-Lopez-Cozar, E., & Herrera, F. (2011). A methodology for institution-field ranking based on a bidimensional analysis: The IFQ(2)A index. Scientometrics, 88(3), 771–786.
Ultsch, A., & Mörchen, F. (2005). ESOM-maps: Tools for clustering, visualization, and classification with emergent SOM. Technical report. 46. Department of Mathematics and Computer Science, University of Marburg, Germany.
UNAM. (2012). Estudio Comparativo de Universidades Mexicanas. http://www.ecum.unam.mx/.
Vanclay, J. K., & Bornmann, L. (2012). Metrics to evaluate research performance in academic institutions: A critique of ERA 2010 as applied in forestry and the indirect H-2 index as a possible alternative. Scientometrics, 91(3), 751–771.
Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data Analysis, 3(2), 111–126.
Waltman, L., van Eck, N. J., van Leeuwen, T. N., Visser, M. S., & van Raan, A. F. (2011). Towards a new crown indicator: An empirical analysis. Scientometrics, 87(3), 467–481.
Weingart, P. (2005). Impact of bibliometrics upon the science system: Inadvertent consequences? Scientometrics, 62(1), 117–131.
Zell, D. (2005). Pressure for relevancy at top-tier business schools. Journal of Management Inquiry, 14(3), 271–274.
Zhao, S. X., Zheng, L. C., & Cai, Z. C. (2009). Evaluation of science and technology innovation ability of colleges and universities in China. In International conference on management of tech-nology, pp. 220–225.
Acknowledgements
This research was partially supported by the Proyecto CITMA-CONACyT (B330.166) and the Empresa de Tecnologías Inteligentes y Modelación de Sistemas S.A. de C.V. The authors acknowledge the collaboration of José Luis Jiménez Andrade (UNAM, Mexico), and of Dr. Félix de Moya Anegón (CSIC, Spain) for the data support given from SCImago Institutions Rankings.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Villaseñor, E.A., Arencibia-Jorge, R. & Carrillo-Calvet, H. Multiparametric characterization of scientometric performance profiles assisted by neural networks: a study of Mexican higher education institutions. Scientometrics 110, 77–104 (2017). https://doi.org/10.1007/s11192-016-2166-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-016-2166-0
Keywords
- Bibliometric rankings
- Higher education
- Institutional academic assessment
- Scientometric indicators
- Self-organized neural networks
- Scientometric data mining
- Mexico