Skip to main content

Advertisement

Log in

The repeat rate: from Hirschman to Stirling

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this short note we recall the history and definition of the repeat rate, also known as the Hirschman–Herfindahl index or as the Simpson index, and show that its generalization to a measure that includes disparity between items, known as the Rao-Stirling index, or a monotone transformation of it, is an acceptable diversity measure which, however, does not meet the ‘monotonicity of balance’ requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Good, I. J. (1982). Comment [on Patil & Taillie, 1982]. Journal of the American Statistical Association, 77(379), 561–563.

    Google Scholar 

  • Herdan, G. (1966). The Advanced theory of language as choice and chance. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Herfindahl, O. C. (1950). Concentration in the U.S. steel industry. Doctoral dissertation, Columbia University.

  • Hill, M. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432.

    Article  Google Scholar 

  • Hirschman, A. O. (1945). National power and the structure of foreign trade. Berkeley: University of California Press.

    Google Scholar 

  • Hirschman, A. O. (1964). The paternity of an index. The American Economic Review, 54(5), 761–762.

    Google Scholar 

  • Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.

    Article  Google Scholar 

  • Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439.

    Article  Google Scholar 

  • Jost, L. (2009). Mismeasuring biological diversity: Response to Hoffmann and Hoffmann (2008). Ecological Economics, 68(4), 925–928.

    Article  Google Scholar 

  • Junge, K. (1994). Diversity of ideas about diversity measurement. Scandinavian Journal of Psychology, 35(1), 16–26.

    Article  Google Scholar 

  • Leinster, T., & Cobbold, C. A. (2012). Measuring diversity: The importance of species similarity. Ecology, 93(3), 477–489.

    Article  Google Scholar 

  • Leydesdorff, L. (2015). Can technology life-cycles be indicated by diversity in patent classifications? The crucial role of variety. Scientometrics, 105(3), 1441–1451.

    Article  Google Scholar 

  • Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2018). Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. Scientometrics, 114(2), 567–592.

    Article  Google Scholar 

  • Mugabushaka, A.-M., Kyriakou, A., & Papazoglou, T. (2015). Bibliometric indicators of interdisciplinarity exploring new class of diversity measures. In A. A. Salah, Y. Tonta, A. A. A. Salah, C. Sugimoto, & U. Al (Eds.), Proceedings of ISSI 2015 (pp. 397–402). Istanbul: Boğaziçi University Printhouse.

    Google Scholar 

  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science USA, 76(10), 5269–5273.

    Article  MATH  Google Scholar 

  • Nijssen, D., Rousseau, R., & Van Hecke, P. (1998). The Lorenz curve: A graphical representation of evenness. Coenoses, 13(1), 33–38.

    Google Scholar 

  • Patil, G. P., & Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association, 77(379), 548–561.

    Article  MathSciNet  MATH  Google Scholar 

  • Pavoine, S. (2012). Clarifying and developing analyses of biodiversity: Towards a generalisation of current approaches. Methods in Ecology and Evolution, 3(3), 509–518.

    Article  Google Scholar 

  • Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P., & Stirling, A. (2012). How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management. Research Policy, 41(7), 1262–1282.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Ray, J. L., & Singer, J. D. (1973). Measuring the concentration of power in the international system. Sociological Methods and Research, 1(4), 403–437.

    Article  Google Scholar 

  • Ricotta, C., & Szeidl, L. (2006). Towards a unifying approach to diversity measures: Bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology, 70(3), 237–243.

    Article  MATH  Google Scholar 

  • Rousseau, R., Hu, X. J., & Zhang, L. (2018). Knowledge integration: Its meaning and measurement. In: W. Glänzel, H. Moed, U. Schmoch, & M. Thelwall (Eds.), Springer Handbook of Science and Technology Indicators. (To appear).

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688.

    Article  MATH  Google Scholar 

  • Smouse, P. E., Banks, S. C., & Peakall, R. (2017). Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLoS ONE, 12(10), e0185499.

    Article  Google Scholar 

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707–719.

    Article  Google Scholar 

  • Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.

    Article  Google Scholar 

  • Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator for interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.

    Article  Google Scholar 

  • Zhou, Q. J., Rousseau, R., Yang, L. Y., Yue, T., & Yang, G. L. (2012). A general framework for describing diversity within systems and similarity between systems with applications in informetrics. Scientometrics, 93(3), 787–812.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Loet Leydesdorff for helpful observations about an earlier version of this note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Rousseau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousseau, R. The repeat rate: from Hirschman to Stirling. Scientometrics 116, 645–653 (2018). https://doi.org/10.1007/s11192-018-2724-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2724-8

Keywords