Skip to main content
Log in

A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

As a driver in modern science, interdisciplinary research has attracted a lot of attention. Major foci are laid on exploring the relations of multiple involved disciplines as well as the knowledge structure in interdisciplinary field. However, there is still a lack of decomposing the knowledge structure of interdisciplinary field to investigate how knowledge from relevant disciplines is integrated in the field. This study proposes an approach to investigating knowledge integration relationships between two research fields from a perspective of hierarchy. Medical Informatics (MI) and its most relevant field of Computer Science (CS) are chosen in the case study. This study decomposed each keyword network of the two fields into four layers by using the K-core method, then quantified the knowledge integration relationships between different layers of the two fields together. The results present that the MI basic layer shows the strongest knowledge integration with CS, followed by the middle layer, with the detail layer the weakest. And all MI layers have the greatest breadth and strength of knowledge integration with the CS middle layer, followed by the CS marginal layer and detail layer, but with the CS basic layer the weakest. A time series analysis shows that the integration of new CS knowledge into MI is a gradual process without explosive growth and the path of knowledge integration between the two fields were identified. The proposed approach could be applied to deeply understanding the integration of one discipline knowledge by an interdisciplinary field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It should be noted that the CS discipline defined by the 30 journals is a small subset of artificial intelligence field in computer science. Other fields of computer science are not covered, such as cybernetics, hardware, software engineering, etc.

  2. https://shiyun-w.github.io/MI-layer/.

References

  • Abramo, G., D’Angelo, C. A., & Costa, F. D. (2012). Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications. Journal of the Association for Information Science & Technology, 63(11), 2206–2222.

    Google Scholar 

  • Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., & Vespignani, A. (2005). k-core decomposition: a tool for the visualization of large scale networks. arXiv:cs/0504107.

  • Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., & Vespignani, A. (2017). K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks & Heterogeneous Media, 3(2), 371–393.

    MathSciNet  MATH  Google Scholar 

  • Bergmann, T., Dale, R., Sattari, N., Heit, E., & Bhat, H. S. (2016). The interdisciplinarity of collaborations in cognitive science. Cognitive Science, 41(5), 1412–1418.

    Google Scholar 

  • Besselaar, P. V. D., & Heimeriks, G. (2006). Mapping research topics using word-reference co-occurrences: A method and an exploratory case study. Scientometrics, 68(3), 377–393.

    Google Scholar 

  • Braun, T., & Schubert, A. (2003). A quantitative view on the coming of age of interdisciplinarity in the sciences 1980–1999. Scientometrics, 58(1), 183–189.

    Google Scholar 

  • Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., & Shir, E. (2007). A model of Internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11150–11154.

    Google Scholar 

  • Chi, R., & Young, J. (2013). The interdisciplinary structure of research on intercultural relations: a co-citation network analysis study. Scientometrics, 96(1), 147–171.

    Google Scholar 

  • Clauset, A., Moore, C., & Newman, M. E. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101.

    Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Google Scholar 

  • Cole, S. (1983). The hierarchy of the sciences? American Journal of Sociology, 89(1), 111–139.

    Google Scholar 

  • Collins, J. J., & Chow, C. C. (1998). It’s a small world. Nature, 393(6684), 409–410.

    Google Scholar 

  • Dong, K., Xu, H., Rui, L., Ling, W., & Shu, F. (2018). An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science. Scientometrics, 115(2), 849–868.

    Google Scholar 

  • Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2006). k-core organization of complex networks. Physical Review Letters, 96(4), 040601.

    Google Scholar 

  • Eidsaa, M., & Almaas, E. (2013). S-core network decomposition: A generalization of k-core analysis to weighted networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 88(6), 062819.

    Google Scholar 

  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy Sciences of the United States of America, 101(1), 5228–5235.

    Google Scholar 

  • Han, J. W., Pei, J., Yin, Y., Mao, R., et al. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87.

    MathSciNet  Google Scholar 

  • Hirst, G. (1978). Discipline impact factors: A method for determining core journal lists. Journal of the American Society for Information Science and Technology, 29(4), 171–172.

    Google Scholar 

  • Hu, J., & Zhang, Y. (2017). Discovering the interdisciplinary nature of big data research through social network analysis and visualization. Scientometrics, 112(1), 91–109.

    Google Scholar 

  • Karlovčec, M., & Mladenić, D. (2015). Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring. Scientometrics, 102(1), 433–454.

    Google Scholar 

  • Karunan, K., Lathabai, H. H., & Prabhakaran, T. (2017). Discovering interdisciplinary interactions between two research fields using citation networks. Scientometrics, 113(1), 335–367.

    Google Scholar 

  • Khaouid, W., Barsky, M., Srinivasan, V., & Thomo, A. (2015). K-core decomposition of large networks on a single PC. Proceedings of the Vldb Endowment, 9(1), 13–23.

    Google Scholar 

  • Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Scientific Reports, 2(13), 336.

    Google Scholar 

  • Lee, B., & Jeong, Y. I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3–19.

    Google Scholar 

  • Lee, K., Jung, H., & Song, M. (2016). Subject–method topic network analysis in communication studies. Scientometrics, 109(3), 1–27.

    Google Scholar 

  • Lee, P. C., Su, H. N., & Chan, T. Y. (2010). Assessment of ontology-based knowledge network formation by vector-space model. Scientometrics, 85(3), 689–703.

    Google Scholar 

  • Leeuwen, T. N. V., & Moed, H. F. (2005). Characteristics of journal impact factors: The effects of uncitedness and citation distribution on the understanding of journal impact factors. Scientometrics, 63(2), 357–371.

    Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.

    Google Scholar 

  • Li, L. G., & Zhang, M. C. (2017). The construction of top disciplines should attach importance to developing discipline group and cross-discipline. Retrieved from http://epaper.gmw.cn/gmrb/html/2017-09/04/nw.D110000gmrb_20170904_1-11.htm. (in Chinese).

  • Liu, G. Y., Hu, J. M., & Wang, H. L. (2012). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203–217.

    Google Scholar 

  • Liu, Y., Tang, M., Zhou, T., & Do, Y. (2015). Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Scientific Reports, 5, 9602.

    Google Scholar 

  • Liu, Z., & Wang, C. (2005). Mapping interdisciplinarity in demography: a journal network analysis. Journal of Information Science, 31(4), 308–316.

    Google Scholar 

  • Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101–134.

    MathSciNet  Google Scholar 

  • Lu, W., Huang, Y., Bu, Y., & Cheng, Q. (2018). Functional structure identification of scientific documents in computer science. Scientometrics, 115(3), 1–24.

    Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite-based historiograms. Journal of the Association for Information Science & Technology, 59(12), 1948–1962.

    Google Scholar 

  • Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & Mcclosky, D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. Proceedings of 52Nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. https://doi.org/10.3115/v1/P14-5010.

    Article  Google Scholar 

  • Mao, J., Lu, K., Zhao, W., & Cao, Y. (2018). How many keywords do authors assign to research articles–a multi-disciplinary analysis?. In Conference 2018 Proceedings.

  • Morillo, F., Bordons, M., & Gómez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.

    Google Scholar 

  • Morris, T. A., & Mccain, K. W. (1998). The structure of medical informatics journal literature. Journal of American Medical Informatics Association, 5(5), 448–466.

    Google Scholar 

  • Nanni, L., Paci, M., Brahnam, S., & Ghidoni, S. (2017). An ensemble of visual features for Gaussians of local descriptors and non-binary coding for texture descriptors. Expert Systems with Applications, 82(C), 27–39.

  • Nichols, L. G. (2014). A topic model approach to measuring interdisciplinarity at the National Science Foundation. Scientometrics, 100(3), 741–754.

    MathSciNet  Google Scholar 

  • Piepenbrink, A., & Nurmammadov, E. (2015). Topics in the literature of transition economies and emerging markets. Scientometrics, 102(3), 2107–2130.

    Google Scholar 

  • Porter, A. L., & Chubin, D. E. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3–4), 161–176.

    Google Scholar 

  • Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.

    Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Google Scholar 

  • Sales-Pardo, M., Guimerà, R., Moreira, A. A., & Amaral, L. A. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15224–15229.

    Google Scholar 

  • Salton, G., & Mcgill, M. J. (1988). The SMART and SIRE experimental retrieval systems. In Readings in information retrieval, 1988.

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.

    Google Scholar 

  • Song, M., & Kim, S. Y. (2013). Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics, 96(1), 183–201.

    Google Scholar 

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707.

    Google Scholar 

  • Valentin, F., Norn, M. T., & Alkaersig, L. (2016). Orientations and outcome of interdisciplinary research: the case of research behavior in translational medical science. Scientometrics, 106(1), 1–24.

    Google Scholar 

  • Wang, X., Cheng, Q., & Lu, W. (2014). Analyzing evolution of research topics with NEViewer: A new method based on dynamic co-word networks. Scientometrics, 101(2), 1253–1271.

    Google Scholar 

  • Wang, L., Notten, A., & Surpatean, A. (2013). Interdisciplinarity of nano research fields: A keyword mining approach. Scientometrics, 94(3), 877–892.

    Google Scholar 

  • White, H. D., & McCain, K. W. (1997). Visualization of Literatures. Annual Review of Information Science and Technology, 32(1), 99–168.

    Google Scholar 

  • Xiao, L., Chen, G., Sun, J., Han, S., & Zhang, C. (2016). Exploring the topic hierarchy of digital library research in China using keyword networks: A K-core decomposition approach. Scientometrics, 108(3), 1–17.

    Google Scholar 

  • Xu, H., Guo, T., Yue, Z., Ru, L., & Fang, S. (2016). Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series. Scientometrics, 106(2), 583–601.

    Google Scholar 

  • Zhang, H., Zhao, H., Cai, W., Liu, J., & Zhou, W. (2010). Using the k-core decomposition to analyze the static structure of large-scale software systems. Journal of Supercomputing, 53(2), 352–369.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (71790612 and 71804135). We gratefully thank Dr. Zhe He in the School of Information at the Florida State University to help label the discipline information of the selected terms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujie Cao or Jin Mao.

Appendices

Appendix A

See Table 8.

Table 8 Journal list in “Medical Informatics” subject category in WoS

Appendix B

See Table 9.

Table 9 The list of 30 Computer Science journals

Appendix C

See Table 10.

Table 10 The distribution of 105 CS terms in CS network and their integration by MI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, Z., Cao, Y., Mao, J. et al. A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science. Scientometrics 119, 1455–1486 (2019). https://doi.org/10.1007/s11192-019-03103-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03103-1

Keywords

Mathematics Subject Classification

Navigation