Abstract
How a scholar's achievement and productivity may change by the award of an academic prize is a topic of a long-term interest in research fields such as scientometrics. Numerous studies have explored the impact of receiving a Nobel Prize, a Turing Award, and other international awards on laureates' scholarly performance, but relatively less attention has been paid to the impact of Derek John de Solla Price Medal on its recipients. This paper adopts the methodology of Structural Variation Analysis (SVA) to evaluate how Price medalists' research are impacted, if any, in terms of citation, h-index, and structural variation patterns in underlying collaborative networks. Moreover, we compare the SVA metrics with other indicators such as composite scores and Highly Cited Researchers (HCR). Our results show that: a Price Medal award may not necessarily boost the medalist’s scholarly potential, actual academic impact and collaboration patterns in a degree that is statistically significant. But the SVA method is a better indicator to evaluate the Price Medalist, especially in five-year time windows.








Similar content being viewed by others
Notes
Michael J. Moravcsik, the prize-winner of 1985, whose record in WOS was only one paper. We considered his h-index and sum of times cited per years may be low on WOS. So we analyze the dataset except him.
Download from http://cluster.cis.drexel.edu/~cchen/citespace/download/.
Judit Bar-Ilan, who contributed greatly with original research to the development of the Bibliometrics, Scientometrics, Webometrics, Hirsch Index and Altmetrics, passed away in 2019 after an extremely courageous fight for life (Peritz, 2019).
References
Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607. https://doi.org/10.1016/j.joi.2011.05.007.
Arcila, C., Pinuel, J. L., & Calderin, M. (2013). The e-Research on Media & Communications: Attitudes, Tools and Practices in Latin America Researchers. Comunicar, 20(40), 111–118. https://doi.org/10.3916/c40-2013-03-01.
Best, J. (2008). Prize proliferation. Sociological Forum, 23(1), 1–27. https://doi.org/10.1111/j.1573-7861.2007.00056.x.
Boerner, K., Contractor, N., Falk-Krzesinski, H. J., Fiore, S. M., Hall, K. L., Keyton, J., Spring, B., Stokols, D., Trochim, W., & Uzzi, B. (2010). A multi-level systems perspective for the science of team science. Science Translational Medicine, 2(49). https://doi.org/10.1126/scitranslmed.3001399
Borjas, G. J., & Doran, K. B. (2015). Prizes and productivity how winning the fields medal affects scientific output. Journal of Human Resources, 50(3), 728–758. https://doi.org/10.3368/jhr.50.3.728.
Bornmann, L. (2014a). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903. https://doi.org/10.1016/j.joi.2014.09.005.
Bornmann, L. (2014b). Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime. Journal of Informetrics, 8(4), 935–950. https://doi.org/10.1016/j.joi.2014.09.007.
Bornmann, L. (2015). Alternative metrics in scientometrics: a meta-analysis of research into three altmetrics. Scientometrics, 103(3), 1123–1144. https://doi.org/10.1007/s11192-015-1565-y.
Bornmann, L., & Haunschild, R. (2016). Overlay maps based on Mendeley data: The use of altmetrics for readership networks. Journal of the Association for Information Science and Technology, 67(12), 3064–3072. https://doi.org/10.1002/asi.23569.
Bornmann, L., & Haunschild, R. (2018). Normalization of zero-inflated data: An empirical analysis of a new indicator family and its use with altmetrics data. Journal of Informetrics, 12(3), 998–1011. https://doi.org/10.1016/j.joi.2018.01.010.
Bornmann, L., Mutz, R., & Daniel, H. D. (2010). The h index research output measurement: Two approaches to enhance its accuracy. Journal of Informetrics, 4(3), 407–414. https://doi.org/10.1016/j.joi.2010.03.005.
Bornmann, L., Haunschild, R., & Adams, J. (2019). Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF). Journal of Informetrics, 13(1), 325–340. https://doi.org/10.1016/j.joi.2019.01.008.
Carpenter, J. (2012). Researchers of tomorrow: The research behaviour of generation Y Doctoral students. Information Services & Use, 32(1–2), 3–17. https://doi.org/10.3233/isu-2012-0637.
Chan, H. F., Onder, A. S., & Torgler, B. (2015). Do Nobel laureates change their patterns of collaboration following prize reception? Scientometrics, 105(3), 2215–2235. https://doi.org/10.1007/s11192-015-1738-8.
Chan, H. F., Onder, A. S., & Torgler, B. (2016). The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509–524. https://doi.org/10.1007/s11192-015-1796-y.
Chan, H. F., Mixon, F. G., & Torgler, B. (2018). Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics. Scientometrics, 114(3), 1069–1086. https://doi.org/10.1007/s11192-017-2614-5.
Chariker, J. H., Zhang, Y. H., Pani, J. R., & Rouchka, E. C. (2017). Identification of successful mentoring communities using network-based analysis of mentor-mentee relationships across Nobel laureates. Scientometrics, 111(3), 1733–1749. https://doi.org/10.1007/s11192-017-2364-4.
Chen, C. M. (2012). Predictive effects of structural variation on citation counts. Journal of the American Society for Information Science and Technology, 63(3), 431–449. https://doi.org/10.1002/asi.21694.
Chen, C. M., Chen, Y., Horowitz, M., Hou, H. Y., Liu, Z. Y., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209. https://doi.org/10.1016/j.joi.2009.03.004.
Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 6. https://doi.org/10.1103/PhysRevE.70.066111.
Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019. https://doi.org/10.1002/asi.23309.
Cress, P. E. (2014). Using altmetrics and social media to supplement impact factor: Maximizing your article's academic and societal impact. Aesthetic Surgery Journal, 34(7), 1123–1126. https://doi.org/10.1177/1090820x14542973.
Crotty, D. (2014). Altmetrics: Finding meaningful needles in the data haystack. Serials Review, 40(3), 141–146. https://doi.org/10.1080/00987913.2014.947839.
Davis, F. M., Obi, A. T., Gallagher, K. A., & Henke, P. K. (2020). Accessing the academic influence of vascular surgeons within the National Institutes of Health iCite database. Journal of Vascular Surgery, 71(5), 1741-+. https://doi.org/10.1016/j.jvs.2019.09.036
Dewett, T., & Denisi, A. S. (2004). Exploring scholarly reputation: It’s more than just productivity. Scientometrics, 60(2), 249–272. https://doi.org/10.1023/b:Scie.0000027796.55585.61.
Dietz, J. S., & Bozeman, B. (2005). Academic careers, patents, and productivity: industry experience as scientific and technical human capital. Research Policy, 34(3), 349–367. https://doi.org/10.1016/j.respol.2005.01.008.
Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187–203. https://doi.org/10.1016/j.joi.2010.10.008.
Dores, W., Benevenuto, F., Laender, A. H. F., & Ieee. (2016). Extracting Academic Genealogy Trees from the Networked Digital Library of Theses and Dissertations. In 2016 Ieee/Acm Joint Conference on Digital Libraries (pp. 163–166).
Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. https://doi.org/10.1007/s11192-006-0144-7.
Emelo, R. (2011). Creating a new mindset guidelines for mentorship in today’s workplace. Training and Development, 65, 44–48.
Erfanmanesh, M., & Moghiseh, Z. (2019). How Winning an International Scientific Award Affects Publishing Behavior of Laureates: the Case of Derek de Solla Price Medal in Scientometrics. Publishing Research Quarterly, 35(2), 201–212. https://doi.org/10.1007/s12109-018-9619-7.
Fox, M. F. (2005). Gender, family characteristics, and publication productivity among scientists. Social Studies of Science, 35(1), 131–150. https://doi.org/10.1177/0306312705046630.
Franceschet, M., & Costantini, A. (2010). The effect of scholar collaboration on impact and quality of academic papers. Journal of Informetrics, 4(4), 540–553. https://doi.org/10.1016/j.joi.2010.06.003.
Garfield, E. (2007). The evolution of the Science Citation Index. International Microbiology, 10(1), 65–69. https://doi.org/10.2436/20.1501.01.10.
Gazni, A., Sugimoto, C. R., & Didegah, F. (2012). Mapping World Scientific Collaboration: Authors, Institutions, and Countries. Journal of the American Society for Information Science and Technology, 63(2), 323–335. https://doi.org/10.1002/asi.21688.
Gingras, Y., & Wallace, M. L. (2010). Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007). Scientometrics, 82(2), 401–412. https://doi.org/10.1007/s11192-009-0035-9.
Glänzel, W., & Persson, O. (2005). H-index for Price medalists. ISSI Newsletter, 1.
Gomez, I., Fernandez, M. T., & Sebastian, J. (1999). Analysis of the structure of international scientific cooperation networks through bibliometric indicators. Scientometrics, 44(3), 441–457. https://doi.org/10.1007/bf02458489.
Gruber, T. (2014). Academic sell-out: how an obsession with metrics and rankings is damaging academia. Journal of Marketing for Higher Education, 24(2), 165–177. https://doi.org/10.1080/08841241.2014.970248.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102.
Hou, J. H., Yang, X. C., & Chen, C. M. (2020). Measuring researchers’ potential scholarly impact with structural variations: Four types of researchers in information science (1979–2018). PLoS ONE, 15(6), 26. https://doi.org/10.1371/journal.pone.0234347.
Hu, G. Y., Wang, L., Ni, R., & Liu, W. S. (2020). Which h-index? An exploration within the Web of Science. Scientometrics, 123(3), 1225–1233. https://doi.org/10.1007/s11192-020-03425-5.
Ioannidis, J. P. A., Klavans, R., & Boyack, K. W. (2016). Multiple citation indicators and their composite across scientific disciplines. Plos Biology, 14(7). https://doi.org/10.1371/journal.pbio.1002501
Ioannidis, J. P. A., Baas, J., Klavans, R., & Boyack, K. W. (2019). A standardized citation metrics author database annotated for scientific field. Plos Biology, 17(8), 6. https://doi.org/10.1371/journal.pbio.3000384.
Jin, B. H., Liang, L. M., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: Complementing the h-index. Chinese Science Bulletin, 52(6), 855–863. https://doi.org/10.1007/s11434-007-0145-9.
Kong, X. J., Shi, Y. J., Wang, W., Ma, K., Wan, L. T., & Xia, F. (2019). The evolution of turing award collaboration network: Bibliometric-level and network-level metrics. IEEE Transactions on Computational Social Systems, 6(6), 1318–1328. https://doi.org/10.1109/tcss.2019.2950445.
Kosmulski, M. (2020). Nobel laureates are not hot. Scientometrics, 123(1), 487–495. https://doi.org/10.1007/s11192-020-03378-9.
Levene, M., Harris, M., & Fenner, T. (2020). A two-dimensional bibliometric index reflecting both quality and quantity. Scientometrics, 123(3), 1235–1246. https://doi.org/10.1007/s11192-020-03454-0.
Li, S., & Li, Z. (2018a). Mapping STS: Based on author co-citation analysis of Bernal Prize recipients. Studies in Science of Science, 36(07), 1170–1179.
Li, S., & Li, Z. (2018b). Mapping STS: Based on author co - citation analysis of Bernal Prize recipients Studies in Science of Science, 36(7), 1170–1179. Retrieved from Go to ISI://CSCD:6298719
Li, J., Yin, Y., Fortunato, S., & Wang, D. (2019). Nobel laureates are almost the same as us. Nature Reviews Physics. https://doi.org/10.1038/s42254-019-0057-z.
Li, J. C., Yin, Y., Fortunato, S., & Wang, D. S. (2020). Scientific elite revisited: patterns of productivity, collaboration, authorship and impact. Journal of the Royal Society Interface, 17(165), 10. https://doi.org/10.1098/rsif.2020.0135.
Liang, G., Hou, H., Ding, Y., & Hu, Z. (2020). Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country. Journal of Informetrics, 14(3), 101053. https://doi.org/10.1016/j.joi.2020.101053.
Marsh, E. J. (2017). Family matters: Measuring impact through one's academic descendants. Perspectives on Psychological Science, 12(6), 1130–1132. https://doi.org/10.1177/1745691617719759.
Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22(6), 635–659. https://doi.org/10.2307/2089193.
Moed, H. F. (2009). New developments in the use of citation analysis in research evaluation. Archivum Immunologiae Et Therapiae Experimentalis, 57(1), 13–18. https://doi.org/10.1007/s00005-009-0001-5.
Mohammadi, E., Gregory, K. B., Thelwall, M., & Barahmand, N. (2020). Which health and biomedical topics generate the most Facebook interest and the strongest citation relationships? Information Processing & Management, 57(3). https://doi.org/10.1016/j.ipm.2020.102230
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103.
Noruzi, A. (2016). Impact Factor, h-index, i10-index and i20-index of Webology. Webology, 13.
Nuzzolese, A. G., Ciancarini, P., Gangemi, A., Peroni, S., Poggi, F., & Presutti, V. (2019). Do altmetrics work for assessing research quality? Scientometrics, 118(2), 539–562. https://doi.org/10.1007/s11192-018-2988-z.
Pan, R. K., Kaski, K., & Fortunato, S. (2012). World citation and collaboration networks: uncovering the role of geography in science. Scientific Reports, 2, 7. https://doi.org/10.1038/srep00902.
Peritz, C. B. (2019). In Memoriam Professor Judit Bar-Ilan 1958–2019. Journal of Data and Information Science, 4(03), 96–97.
Podsakoff, P. M., MacKenzie, S. B., Podsakoff, N. P., & Bachrach, D. G. (2008). Scholarly influence in the field of management: A bibliometric analysis of the determinants of university and author impact in the management literature in the past quarter century. Journal of Management, 34(4), 641–720. https://doi.org/10.1177/0149206308319533.
Rodriguez, C. T., & de Araujo, R. F. (2018). Altmetrics and citation indicators applied to scientific production in ScienceOpen: descriptive analysis for Brazil, Spain and Portugal. Bibliotecas-Anales De Investigacion, 14(2), 124–137. Retrieved from Go to ISI://WOS:000437952400003
Rossi, L., Freire, I., & Mena-Chalco, J. (2017). Genealogical index: A metric to analyze advisor–advisee relationships. Journal of Informetrics, 11, 564–582. https://doi.org/10.1016/j.joi.2017.04.001.
Roth, C., Wu, J., & Lozano, S. (2012). Assessing impact and quality from local dynamics of citation networks. Journal of Informetrics, 6(1), 111–120. https://doi.org/10.1016/j.joi.2011.08.005.
Ruscio, J. (2016). Taking advantage of citation measures of scholarly impact: Hip Hip h Index! Perspectives on Psychological Science, 11(6), 905–908. https://doi.org/10.1177/1745691616664436.
Sanyal, D., Dey, S., & Das, P. (2020). gm-index: a new mentorship index for researchers. Scientometrics. https://doi.org/10.1007/s11192-020-03384-x.
Schreiber, M. (2008). An empirical investigation of the g-index for 26 physicists in comparison with the h-Index, the A-index, and the R-index. Journal of the American Society for Information Science and Technology, 59(9), 1513–1522. https://doi.org/10.1002/asi.20856.
Stokols, D., Hall, K. L., Taylor, B. K., & Moser, R. P. (2008). The science of team science—Overview of the field and introduction to the supplement. American Journal of Preventive Medicine, 35(2), S77–S89. https://doi.org/10.1016/j.amepre.2008.05.002.
Sugimoto, C. R. (2014). Academic genealogy. In B. Cronin, & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (1st ed.): MIT Press.
Sugimoto, C. R., Ni, C., Russell, T. G., & Bychowski, B. (2011). Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in library and information science. Journal of the American Society for Information Science and Technology, 62(9), 1808–1828. https://doi.org/10.1002/asi.21568.
Sugimoto, C. R., Work, S., Lariviere, V., & Haustein, S. (2017). Scholarly use of social media and altmetrics: A review of the literature. Journal of the Association for Information Science and Technology, 68(9), 2037–2062. https://doi.org/10.1002/asi.23833.
Tahamtan, I., & Bornmann, L. (2020). Altmetrics and societal impact measurements: Match or mismatch? A literature review. Profesional De La Informacion, 29(1), 29. https://doi.org/10.3145/epi.2020.ene.02.
Tenopir, C., Volentine, R., & King, D. W. (2013). Social media and scholarly reading. Online Information Review, 37(2), 193–216. https://doi.org/10.1108/oir-04-2012-0062.
Thelwall, M., Haustein, S., Lariviere, V., & Sugimoto, C. R. (2013). Do Altmetrics Work? Twitter and Ten Other Social Web Services. Plos One, 8(5). https://doi.org/10.1371/journal.pone.0064841
Truex, D., Cuellar, M., Takeda, H., & Vidgen, R. (2011). The scholarly influence of Heinz Klein: ideational and social measures of his impact on IS research and IS scholars. European Journal of Information Systems, 20(4), 422–439. https://doi.org/10.1057/ejis.2011.16.
Van Noorden, R. (2014). Scientists and the social network. Nature, 512(7513), 126–129. https://doi.org/10.1038/512126a.
van Raan, A. F. J. (2004). Sleeping beauties in science. Scientometrics, 59(3), 467–472. https://doi.org/10.1023/B:SCIE.0000018543.82441.f1.
Wagner, C. S., Horlings, E., Whetsell, T. A., Mattsson, P., & Nordqvist, K. (2015). Do Nobel Laureates Create Prize-Winning Networks? An analysis of Collaborative Research in Physiology or Medicine (vol 10, e0134164, 2015). PLoS ONE, 10(8), 1. https://doi.org/10.1371/journal.pone.0136478.
Wang, M. Y., Zhang, J. Q., Jiao, S. J., & Zhang, T. Y. (2019). Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations. Plos One, 14(11). https://doi.org/10.1371/journal.pone.0225276
Yan, E. J., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107–2118. https://doi.org/10.1002/asi.21128.
Yheulon, C. G., Schlussel, A. T., Ernat, J. J., Cafasso, D. E., Carlson, T. L., Gallagher, M. E., & Kellicut, D. C. (2020). Scholarly output and the impact of self-citation among surgical fellowship program directors. American Journal of Surgery, 219(6), 913–917. https://doi.org/10.1016/j.amjsurg.2019.07.002.
Zheng, J., & Liu, N. (2015). Mapping of important international academic awards. Scientometrics, 104(3), 763–791. https://doi.org/10.1007/s11192-015-1613-7.
Zhou, C. L., Kong, X. Y., & Lin, Z. P. (2019). Research on Derek John de Solla Price Medal Prediction Based on Academic Credit Analysis. Scientometrics, 118(1), 159–175. https://doi.org/10.1007/s11192-018-2964-7.
Zuckerman, H. (1996). Scientific elite: Nobel laureates in the United States. . Transaction.
Acknowledgments
This research was supported by The National Social Science Fund of China(Grant No. 20BTQ085), By Dr. Yang Zhang and The Soft Science Project of Science and Technology Program of Guangdong Province(CN), 2019B101001024, By Dr. Jianhua Hou
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Variable name illustration
Variable name | Annotation |
---|---|
\(\Delta M\) | Modularity change rate |
AY | The award year of laureates |
PV | The peak value year of \(\Delta M\) |
X | Difference between the award year and peak value year |
Category A | Scholar whose award year is before the peak value year |
Category B | Scholar whose award year is after the peak value year |
Category C | Scholar whose award year is the peak value year |
Type ① | Scholar with monotonically increasing trend of \(\Delta M\) value |
Type ② | Scholar with monotonically decreasing trend of \(\Delta M\) value |
Type ③ | Scholar has no \(\Delta M\) value or the value was zero after medal reception |
Type ④ | Scholar with fluctuating \(\Delta M\) value |
PN | The year of peak number of co-authors |
\(\Delta Y\) | Difference between the award year and the year of peak number of co-authors |
Appendix B: The 100 scholars with the highest \(\Delta M\) value during 2014–2018
Ranking | Name (Award Year) | △M score | Ranking | Name | △M score | Ranking | Name | △M score |
---|---|---|---|---|---|---|---|---|
1 | Thelwall M (2015) | 113.62 | 35 | Lariviere V | 20.65 | 69 | Tang Li | 16.01 |
2 | Mingers J | 70.17 | 36 | Jafarzadeh H | 20.64 | 70 | Choi S | 15.66 |
3 | Abramo G | 51.03 | 37 | Barnes C | 20.48 | 71 | Echeverry-Correa J D | 15.2 |
4 | Zitt M (2009) | 48.71 | 38 | Lee L | 20.2 | 72 | Wang J | 15.13 |
5 | Serenko A | 48.39 | 39 | Biggiero L | 20.16 | 73 | Hidalgo C | 15.03 |
6 | Guan J | 46.98 | 40 | Akoglu L | 20.07 | 74 | Olijnyk Nicholas V | 14.89 |
7 | Bornmann L (2019) | 44.09 | 40 | Tan Hui Xuan | 20.07 | 75 | Zhu Q | 14.87 |
8 | Ebadi A | 40.94 | 42 | Amjad T | 20.01 | 76 | Gonzalez-Teruel A | 14.82 |
9 | Haustein S | 40.3 | 43 | Lee H | 19.73 | 77 | Billah Syed Masum | 14.73 |
10 | Leydesdorff L (2003) | 39.09 | 44 | Jeong S | 19.65 | 78 | Luis Ortega Jose | 14.59 |
11 | Zupic I | 36.83 | 44 | Park J | 19.65 | 79 | Wang F | 14.58 |
12 | Yan E | 34.19 | 46 | Ke Q | 18.93 | 80 | Landini F | 14.36 |
13 | Huang M | 33.59 | 47 | Behnert C | 18.61 | 81 | Nykl M | 14.24 |
14 | Fairclough R | 33 | 48 | Schraven Daan F J | 18.23 | 82 | Kousha K | 14.09 |
15 | Cimenler O | 30.7 | 49 | Wood J | 18.15 | 82 | Ozcinar H | 14.09 |
16 | Zhu Y | 30.62 | 50 | Liu X | 18.03 | 84 | Shema H | 13.8 |
17 | Gallivan M | 29.99 | 51 | Bertsimas D | 17.68 | 85 | Shoup Jo Ann | 13.76 |
18 | Sriwannawit P | 27.19 | 52 | Costas R | 17.54 | 86 | Cabanac G | 13.75 |
19 | Bordons M | 26.48 | 53 | Mutschke P | 17.49 | 87 | Gorraiz J | 13.74 |
20 | Kim Y | 26.14 | 54 | Zhao D | 17.36 | 88 | Bhattacharya S | 13.67 |
21 | Armando Ronda-pupo Guillermo | 25.96 | 55 | Taba Seyedamir Tavakoli | 17.32 | 89 | Ferligoj A | 13.64 |
22 | Song Min | 25.46 | 56 | Fetscherin M | 17.24 | 90 | Ghiasi G | 13.55 |
23 | Park I | 23.99 | 57 | Zuccala A | 17.07 | 90 | Koseoglu Mehmet Ali | 13.55 |
24 | Rotolo D | 22.98 | 58 | Badar K | 16.83 | 92 | Nakamura H | 13.37 |
25 | Kraker P | 22.46 | 59 | Olmeda-Gomez C | 16.51 | 93 | Harzing A | 13.31 |
25 | Yang G | 22.46 | 60 | Gleich David F | 16.43 | 94 | Hwang Y | 13.04 |
27 | Das Gollapalli Sujatha | 22.4 | 61 | Zhu X | 16.39 | 94 | Yang S | 13.04 |
28 | Mohammadi E | 22.37 | 62 | Kim J | 16.35 | 96 | Bikard M | 13.01 |
29 | Demarest B | 22.18 | 63 | Fiala D | 16.33 | 97 | Yan B | 12.9 |
30 | Wagner Caroline S | 21.99 | 64 | Fang Hui | 16.16 | 98 | Wang M | 12.83 |
31 | Ravi K | 21.85 | 64 | Payumo Jane G | 16.16 | 99 | Martinez-Camara E | 12.82 |
32 | Alvarez R | 21.83 | 66 | Abrizah A | 16.12 | 100 | Liao Chien Hsiang | 12.57 |
33 | Wolfram D | 21.74 | 67 | Hoehle H | 16.1 | 101 | …… | …… |
34 | Moed Henk F (1999) | 20.9 | 68 | Katchanov Yurij L | 16.06 | 102 | …… | …… |
Rights and permissions
About this article
Cite this article
Hou, J., Zheng, B., Zhang, Y. et al. How do Price medalists’ scholarly impact change before and after their awards?. Scientometrics 126, 5945–5981 (2021). https://doi.org/10.1007/s11192-021-03979-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-021-03979-y