Skip to main content
Log in

Dynamic network analytics for recommending scientific collaborators

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Collaboration is one of the most important contributors to scientific advancement and a crucial aspect of an academic’s career. However, the explosion in academic publications has, for some time, been making it more challenging to find suitable research partners. Recommendation approaches to help academics find potential collaborators are not new. However, the existing methods operate on static data, which can render many suggestions less useful or out of date. The approach presented in this paper simulates a dynamic network from static data to gain further insights into the changing research interests, activities and co-authorships of scholars in a field–all insights that can improve the quality of the recommendations produced. Following a detailed explanation of the entire framework, from data collection through to recommendation modelling, we provide a case study on the field of information science to demonstrate the reliability of the proposed method, and the results provide empirical insights to support decision-making in related stakeholders—e.g., scientific funding agencies, research institutions and individual researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://www.thevantagepoint.com/.

References

  • Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the Web. Social Networks, 25, 211–230.

    Article  Google Scholar 

  • Akaike, H. T. (1974). A New Look at the Statistical Model Identification. Automatic Control IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Alinani, K., Alinani, A., Narejo, D. H., & Wang, G. (2018). Aggregating author profiles from multiple publisher networks to build a list of potential collaborators. IEEE Access, 6, 20298–20308.

    Article  Google Scholar 

  • Benchettara, N., Kanawati, R., & Rouveirol, C. (2010). A supervised machine learning link prediction approach for academic collaboration recommendation. Proceedings of the fourth ACM conference on Recommender systems (pp. 253–256). Berlin, Heidelberg: Springer.

  • Bian, J., Xie, M., Topaloglu, U., Hudson, T., Eswaran, H., & Hogan, W. (2014). Social network analysis of biomedical research collaboration networks in a CTSA institution. Journal of Biomedical Informatics, 52, 130–140.

    Article  Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of machine Learning research, 3, 993–1022.

    MATH  Google Scholar 

  • Box, G. E., & Jenkins, G. M. (1976). Time series analysis: forecasting and control rev. ed. Oakland, California, Holden-Day, 31(4), 238–242.

  • Chaiwanarom, P., & Lursinsap, C. (2015). Collaborator recommendation in interdisciplinary computer science using degrees of collaborative forces, temporal evolution of research interest, and comparative seniority status. Knowledge-Based Systems, 75, 161–172.

    Article  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794).

  • Chen, R., Hua, Q., Chang, Y. S., Wang, B., Zhang, L., & Kong, X. (2018). A survey of collaborative filtering-based recommender systems: From traditional methods to hybrid methods based on social networks. IEEE Access, 6, 64301–64320.

    Article  Google Scholar 

  • Chen, W., Qu, H., & Chi, K. (2021). Partner Selection in China Interorganizational Patent Cooperation Network Based on Link Prediction Approaches. Sustainability, 13(2), 1003.

    Article  Google Scholar 

  • Cho, H., & Yu, Y. (2018). Link prediction for interdisciplinary collaboration via co-authorship network. Social Network Analysis and Mining, 8(1), 1–12.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (2010). Indexing by latent semantic analysis. Journal of the Association for Information Science & Technology, 41(6), 391–407.

    Google Scholar 

  • Eck, N. J. V., & Waltman, L. (2008). Appropriate Similarity Measures for Author Cocitation Analysis. Journal of the Association for Information Science & Technology, 59(10), 1653–1661.

    Google Scholar 

  • Eck, N. J. V., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.

    Article  Google Scholar 

  • Fawcett, T. (2005). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Gao, Z., Fan, Y., Wu, C., Tan, W., Zhang, J., Ni, Y., & Chen, S. (2018). Seco-lda: Mining service co-occurrence topics for composition recommendation. IEEE Transactions on Services Computing, 12(3), 446–459.

    Article  Google Scholar 

  • Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E., & Clauset, A. (2019). Stacking Models for Nearly Optimal Link Prediction in Complex Networks. Proceedings of the National Academy of Sciences, 117(38), 23393–23400.

    Article  Google Scholar 

  • Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD: Proceedings. International Conference on Knowledge Discovery & Data Mining., 2016, 855–864.

    Google Scholar 

  • Gui, Q., Liu, C., & Du, D. B. (2019). The structure and dynamic of scientific collaboration network among countries along the belt and road. Sustainability, 11(19), 5187.

    Article  Google Scholar 

  • Guns, R., & Rousseau, R. (2014). Recommending research collaborations using link prediction and random forest classifiers. Scientometrics, 101(2), 1461–1473.

    Article  Google Scholar 

  • Guo, G., Zhang, J., & Yorke-Smith, N. (2016). A novel recommendation model regularized with user trust and item ratings. IEEE transactions on knowledge and data engineering, 28(7), 1607–1620.

    Article  Google Scholar 

  • Haruna, K., Ismail, M. A., Damiasih, D., Sutopo, J., & Herawan, T. (2017). A collaborative approach for research paper recommender system. PLoS ONE, 12(10), e0184516.

    Article  Google Scholar 

  • He, C., Wu, J., & Zhang, Q. (2021). Proximity-aware research leadership recommendation in research collaboration via deep neural networks. Journal of the Association for Information Science and Technology. https://doi.org/10.1002/asi.24546

    Article  Google Scholar 

  • Hoang, D. T., Nguyen, N. T., Tran, V. C., & Hwang, D. (2019). Research collaboration model in academic social networks. Enterprise Information Systems, 13(7–8), 1023–1045.

    Article  Google Scholar 

  • Hou, J., Yang, X., & Chen, C. (2018). Emerging trends and new developments in information science: A document co-citation analysis (2009–2016). Scientometrics, 115(2), 869–892.

    Article  Google Scholar 

  • Hu, K., Wu, H., Qi, K., Yu, J., Yang, S., Yu, T., Zheng, J., & Liu, B. (2018). A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model. Scientometrics, 114(3), 1031–1068.

    Article  Google Scholar 

  • Huang, Z., & Lin, D. K. J. (2009). The time-series link prediction problem with applications in communication surveillance. Informs Journal on Computing, 21(2), 286–303.

    Article  Google Scholar 

  • Huang, L., Zhu, Y., Zhang, Y., Zhou, X., & Jia, X. (2018). A link prediction-based method for identifying potential cooperation partners: A case study on four journals of informetrics. In 2018 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1–6). IEEE.

  • Işık, G. T. Z. (2018). A Hybrid Movie Recommendation System Using Graph-Based Approach. International Journal of Computing, 7(2), 29–37.

    Google Scholar 

  • Jeh, G., & Widom, J. (2002). SimRank: A Measure of Structural-Context Similarity. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 538–543). New York: ACM Press.

  • Junuthula, R. R., Xu, K. S., & Devabhaktuni, V. K. (2016). Evaluating link prediction accuracy in dynamic networks with added and removed edges. In 2016 IEEE international conferences on big data and cloud computing (BDCloud), social computing and networking (SocialCom), sustainable computing and communications (SustainCom) (BDCloud-SocialCom-SustainCom) (pp. 377–384). IEEE.

  • Kim, J., & Diesner, J. (2019). Formational bounds of link prediction in collaboration networks. Scientometrics, 119(2), 687–706.

    Article  Google Scholar 

  • Kim, H. C., Pang, S., Je, H. M., Kim, D., & Bang, S. Y. (2002a). Pattern Classification Using Support Vector Machine Ensemble (pp. 160–163). International Conference on Pattern Recognition. IEEE.

  • Kim, H. C., Pang, S., Je, H. M., Kim, D., & Bang, S. Y. (2002b). Support vector machine ensemble with bagging. Pattern Recognition with Support Vector Machines, 2388, 397–407.

    Article  MATH  Google Scholar 

  • Kipf, T. & Welling, M. (2016). Variational Graph Auto-Encoders.

  • Kong, X., Jiang, H., Yang, Z., Xu, Z., Xia, F., & Tolba, A. (2016). Exploiting publication contents and collaboration networks for collaborator recommendation. PloS One, 11(2), e0148492.

    Article  Google Scholar 

  • Kong, X., Mao, M., Wang, W., Liu, J., & Xu, B. (2018). VOPRec: Vector representation learning of papers with text information and structural identity for recommendation. IEEE Transactions on Emerging Topics in Computing.

  • Lai, T. L., & Tsang, K. W. (2016). MULTIVARIATE STOCHASTIC REGRESSION IN TIME SERIES MODELING. Statistica Sinica, 1411–1426.

  • Lande, D., Fu, M., Guo, W., Balagura, I., Gorbov, I., & Yang, H. (2020). Link prediction of scientific collaboration networks based on information retrieval. World Wide Web, 23(4), 2239–2257.

    Article  Google Scholar 

  • Lee, D. H., & Schleyer, T. (2010). MeSH term explosion and author rank improve expert recommendations. American Medical Informatics Association Annual Symposium Proceedings, 13, 412–416.

    Google Scholar 

  • Lee, D. H., Brusilovsky, P., & Schleyer, T. (2011). Recommending collaborators using social features and MeSH terms. Proceedings of the American Society for Information Science and Technology, 48(1), 1–10.

    Google Scholar 

  • Leydesdorff, L. (2005). Similarity measures, author cocitation analysis, and information theory. Journal of the American Society for Information Science and Technology, 56(7), 769–772.

    Article  Google Scholar 

  • Li, J. C., Zhao, D. L., Ge, B. F., Yang, K. W., & Chen, Y. W. (2018a). A link prediction method for heterogeneous networks based on BP neural network. Physica A: Statistical Mechanics and Its Applications, 495, 1–17.

    Article  Google Scholar 

  • Li, Z., Zhang, H., Wang, S., Huang, F., Li, Z., & Zhou, J. (2018b). Exploit latent Dirichlet allocation for collaborative filtering. Frontiers of Computer Science, 12(3), 571–581.

    Article  Google Scholar 

  • Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the Association for Information Science and Technology, 58(7), 1019–1031.

    Google Scholar 

  • Liu, Y., Wang, S., Khan, M. S., & He, J. (2018). A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering. Big Data Mining and Analytics, 1(3), 211–221.

    Article  Google Scholar 

  • Lu, Z. G., & Chen, Q. (2020). Discovering Potential Partners via Projection-Based Link Prediction in the Supply Chain Network. International Journal of Computational Intelligence Systems, 13(1), 1253–1264.

    Article  MathSciNet  Google Scholar 

  • LĂĽ, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physical A Statistical Mechanics & Its Applications, 390(6), 1150–1170.

    Article  Google Scholar 

  • Mcinnes, B. T., & Pedersen, T. (2013). Evaluating measures of semantic similarity and relatedness to disambiguate terms in biomedical text. Journal of Biomedical Informatics, 46(6), 1116–1124.

    Article  Google Scholar 

  • Meng, L., Huang, R., & Gu, J. (2013). A review of semantic similarity measures in wordnet. International Journal of Hybrid Information Technology, 6(1), 1–12.

    Google Scholar 

  • Meyffret, S., MĂ©dini, L., & Laforest, F. (2013). Confidence on collaborative filtering and trust-based recommendations. In International Conference on Electronic Commerce and Web Technologies (pp. 162–173). Springer, Berlin, Heidelberg.

  • Molaei, S., Havvaei, A., Zare, H., & Jalili, M. (2021). Collaborative Deep Forest Learning for Recommender Systems. IEEE Access, 9, 22053–22061.

    Article  Google Scholar 

  • Newman, M.E.J. (2001). Clustering and preferential attachment in growing networks. Working Papers, 64(2), 025102.

  • Pradhan, T., & Pal, S. (2020). A multi-level fusion based decision support system for academic collaborator recommendation. Knowledge-Based Systems, 197, 105784.

    Article  Google Scholar 

  • Schreiber, M., Kraft, B., & ZĂĽndorf, A. (2017). Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously (pp. 41–47). IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice (SER and IP).

  • Shani, G., Meek, C., & Gunawardana, A. (2001). Hierarchical Probabilistic Segmentation of Discrete Events. Intelligent Data Analysis, 15(4), 483–501.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2011). Link prediction in citation networks. Journal of the Association for Information Science & Technology, 63(1), 78–85.

    Google Scholar 

  • Sugiyama, K., Kumar, T., Kan, M. Y., & Tripathi, R. C. (2010). Identifying citing sentences in research papers using supervised learning (pp. 67–72). 2010 International Conference on Information Retrieval & Knowledge Management (CAMP). IEEE.

  • Sun, C., Ng, K. T. J., Henville, P., & Marchant, R. (2018). Hierarchical Word Mover Distance for Collaboration Recommender System. In Australasian Conference on Data Mining (pp. 289–302). Springer, Singapore.

  • Sun, N., Lu, Y., & Cao, Y. (2019). Career age-aware scientific collaborator recommendation in scholarly big data. IEEE Access, 7, 136036–136045.

    Article  Google Scholar 

  • Terveen, L., & McDonald, D. W. (2005). Social matching: A framework and research agenda. ACM Transactions on Computer-Human Interaction (TOCHI), 12(3), 401–434.

    Article  Google Scholar 

  • Wang, Y., Liu, Z., & Sun, M. (2015). Incorporating linguistic knowledge for learning distributed word representations. PLOS ONE, 10(4), e0118437.

    Article  Google Scholar 

  • Wang, W., Feng, Y., Jiao, P., & Yu, W. (2017). Kernel framework based on non-negative matrix factorization for networks reconstruction and link prediction. Knowledge Based Systems, 137(1), 104–114.

    Article  Google Scholar 

  • Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. (2018). A content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9.

    Article  Google Scholar 

  • Wang, M., Wu, Z., Sun, X., Feng, G., & Zhang, B. (2019a). Trust-aware collaborative filtering with a denoising autoencoder. Neural Processing Letters, 49(2), 835–849.

    Article  Google Scholar 

  • Wang, W., Xu, B., Liu, J., Cui, Z., Yu, S., Kong, X., & Xia, F. (2019b). CSTeller: Forecasting scientific collaboration sustainability based on extreme gradient boosting. World Wide Web, 22(6), 2749–2770.

    Article  Google Scholar 

  • White, H., & Mccain, K. (2010). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the Association for Information Science and Technology, 49(4), 327–355.

    Google Scholar 

  • Xia, H., Luo, Y., & Liu, Y. (2021). Attention neural collaboration filtering based on GRU for recommender systems. Complex & Intelligent Systems, 1–13.

  • Yan, E., & Guns, R. (2014). Predicting and recommending collaborations: An author-, institution-, and country-level analysis. Journal of Informetrics, 8(2), 295–309.

    Article  Google Scholar 

  • Yang, C., Liu, T., Chen, X., Bian, Y., & Liu, Y. (2020). HNRWalker: recommending academic collaborators with dynamic transition probabilities in heterogeneous networks. Scientometrics, 123(1), 429–449.

    Article  Google Scholar 

  • Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014). “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 85, 26–39.

    Article  Google Scholar 

  • Zhang, Y., Zhang, C., & Liu, X. (2017a). Dynamic Scholarly Collaborator Recommendation via Competitive Multi-Agent Reinforcement Learning. the Eleventh ACM Conference. ACM.

  • Zhang, Y., Zhang, G., Zhu, D., & Lu, J. (2017b). Scientific evolutionary pathways: Identifying and visualizing relationships for scientific topics. Journal of the Association for Information Science and Technology, 68(8), 1925–1939.

    Article  Google Scholar 

  • Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H., & Zhang, G. (2018). Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 12(4), 1099–1117.

    Article  Google Scholar 

  • Zhang, C., Wu, X., Yan, W., Wang, L., & Zhang, L. (2019a). Attribute-aware graph recurrent networks for scholarly friend recommendation based on internet of scholars in scholarly big data. IEEE Transactions on Industrial Informatics, 16(4), 2707–2715.

    Article  Google Scholar 

  • Zhang, Q., Mao, R., & Li, R. (2019b). Spatial–temporal restricted supervised learning for collaboration recommendation. Scientometrics, 119, 1497–1517.

    Article  Google Scholar 

  • Zhang, H., Kong, X., & Zhang, Y. (2021). Selective Knowledge Transfer for Cross-Domain Collaborative Recommendation. IEEE Access, 9, 48039–48051.

    Article  Google Scholar 

  • Zhao, D., & Strotmann, A. (2010). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.

    Article  Google Scholar 

  • Zhou, P., & Jiang, D. (2020). Study on the evolution of hot topics in the urban development. Evolutionary Intelligence. https://doi.org/10.1007/s12065-020-00391-y

    Article  Google Scholar 

  • Zhou, T., LĂĽ, L., & Zhang, Y. C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623–630.

    Article  MATH  Google Scholar 

  • Zhou, X., Ding, L., Li, Z., & Wan, R. (2017). Collaborator recommendation in heterogeneous bibliographic networks using random walks. Information Retrieval Journal, 20(4), 317–337.

    Article  Google Scholar 

  • Zhu, T. T., & Lan, M. (2014). Measuring short Text Semantic Similarity using multiple measurements. International Conference on Machine Learning and Cybernetics, 1(4), 808–813.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China Funds [Grant No. 71774013] and the Australian Research Council under Discovery Early Career Researcher Award DE190100994. Our heartfelt appreciation goes to Xiaoli Cao and Changtian Wang for their contributions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Chen, X., Zhang, Y. et al. Dynamic network analytics for recommending scientific collaborators. Scientometrics 126, 8789–8814 (2021). https://doi.org/10.1007/s11192-021-04164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-04164-x

Keywords

Navigation