Skip to main content
Log in

Investigating the genealogy of the literature on digital pathology: a two-dimensional bibliometric approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The purpose of our study is to investigate the genealogy of the literature on digital pathology (DP) by evaluating the “upstream” (source papers in the field), “midstream” (outstanding papers in the field), and “downstream” (latest papers in the field) of the research field. All analyses are carried out on a complete database, on which we performed cocitation analysis, bibliographic coupling and double-cluster analysis. Our research reveals the integral knowledge structure of DP, which will help researchers understand the trend of DP, accounting for academic prospects regarding the application of DP in clinic. In addition, as a methodological contribution, we propose a two-dimensional bibliometric approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acs, B., & Hartman, J. (2020). Next generation pathology: Artificial intelligence enhances histopathology practice. Journal of Pathology, 250(1), 7–8.

    Google Scholar 

  • Acs, B., & Rimm, D. L. (2018). Not Just Digital Pathology, Intelligent Digital Pathology. Jama Oncology, 4(3), 403–404.

    Google Scholar 

  • Aeffner, F., Wilson, K., Bolon, B., Kanaly, S., Mahrt, C. R., Rudmann, D., Elaine Charles, G., & Young, D. (2016). Commentary: Roles for pathologists in a high-throughput image analysis team. Toxicologic Pathology, 44(6), 825–834.

    Google Scholar 

  • Al-Janabi, S., Huisman, A., & Van Diest, P. J. (2012). Digital pathology: Current status and future perspectives. Histopathology, 61(1), 1–9.

    Google Scholar 

  • Bacopoulou, F., Landis, G. N., Pałasz, A., Tsitsika, A., Vlachakis, D., Tsarouhas, K., Tsitsimpikou, C., Stefanaki, C., Kouretas, D., & Efthymiou, V. (2020). Identifying early abdominal obesity risk in adolescents by telemedicine: A cross-sectional study in Greece. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2020.111532

    Article  Google Scholar 

  • Beck, A. H., Sangoi, A. R., Leung, S., Marinelli, R. J., Nielsen, T. O., van de Vijver, M. J., West, R. B., van de Rijn, M., & Koller, D. (2011). Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.3002564

    Article  Google Scholar 

  • Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncolog, 16(11), 703–715.

    Google Scholar 

  • Cheng, W. C., Saleheen, F., & Badano, A. (2019). Assessing color performance of whole-slide imaging scanners for digital pathology. Color Research and Application, 44(3), 322–334.

    Google Scholar 

  • Cooper, I. D. (2015). Bibliometrics basics. Journal of the Medical Library Association, 103(4), 217–218.

    Google Scholar 

  • Cooper, L. A. D., Demicco, E. G., Saltz, J. H., Powell, R. T., Rao, A., & Lazar, A. (2018). PanCancer insights from the cancer genome atlas: The pathologist’s perspective. The Journal of Pathology. https://doi.org/10.1002/path.5028

    Article  Google Scholar 

  • Dunn, B. E., Choi, H., Almagro, U. A., Recla, D. L., Krupinski, E. A., & Weinstein, R. S. (1999). Routine surgical telepathology in the department of veterans affairs: Experience-related improvements in pathologist performance in 2200 cases. Telemedicine Journal, 5(4), 323–337.

    Google Scholar 

  • Falzarano, S. M., Zhou, M., Hernandez, A. V., Klein, E. A., Rubin, M. A., & Magi-Galluzzi, C. (2011). Single focus prostate cancer: Pathological features and ERG fusion status. Journal of Urology, 185(2), 489–494.

    Google Scholar 

  • Farris, A. B., Moghe, I., Simon, W., Hogan, J., Cornell, L. D., Alexander, M. P., Kers, J., Demetris, A. J., Levenson, R. M., Tomaszewski, J., Barisoni, L., Yagi, Y., & Solez, K. (2020). Banff digital pathology working group: Going digital in transplant pathology. American Journal of Transplantation. https://doi.org/10.1111/ajt.15850

    Article  Google Scholar 

  • Gilbertson, J. R., Ho, J., Anthony, L., Jukic, D. M., Yagi, Y., & Parwani, A. V. (2006). Primary histologic diagnosis using automated whole slide imaging: A validation study. BMC clinical pathology, 6(1), 1–19.

    Google Scholar 

  • Goldenberg, S. L., Nir, G., & Salcudean, S. E. (2019). A new era: Artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology, 16(7), 391–403.

    Google Scholar 

  • Halliday, B. E., Bhattacharyya, A. K., Graham, A. R., Davis, J. R., Anne Leavitt, S., Nagle, R. B., Mclaughlin, W. J., Rivas, R. A., Martinez, R., Krupinski, E. A., & Weinstein, R. S. (1997). Diagnostic accuracy of an international static-imaging telepathology consultation service. Human Pathology, 28(1), 17–21.

    Google Scholar 

  • Hamza, S. H., & Reddy, V. V. B. (2004). Digital image acquisition using a consumer-type digital camera in the anatomic pathology setting. Advances in Anatomic Pathology, 11(2), 94–100.

    Google Scholar 

  • Herwig-Carl, M. C., & Loeffler, K. U. (2020). Ophthalmic Pathology - Still the Gold Standard? Klinische Monatsblatter Fur Augenheilkunde, 237(07), 867–878.

    Google Scholar 

  • Ho, J., Parwani, A. V., Jukic, D. M., Yagi, Y., Anthony, L., & Gilbertson, J. R. (2006). Use of whole slide imaging in surgical pathology quality assurance: Design and pilot validation studies. Human pathology, 37(3), 322–331.

    Google Scholar 

  • Hui, G., Cheng, Z., Ran, H., Ziwei, W., & Fang, D. (2020). A pooled study of angiotensin-converting enzyme insertion/deletion gene polymorphism in relation to risk, pathology and prognosis of childhood immunoglobulin a vasculitis nephritis. Biochemical Genetics. https://doi.org/10.1007/s10528-020-09999-2

    Article  Google Scholar 

  • Kaplan, K. J., Burgess, J. R., Sandberg, G. D., Myers, C. P., Bigott, T. R., & Greenspan, R. B. (2002). Use of robotic telepathology for frozen-section diagnosis: A retrospective trial of a telepathology system for intraoperative consultation. Modern Pathology, 15(11), 1197–1204.

    Google Scholar 

  • Klughammer, J., Kiesel, B., Roetzer, T., Fortelny, N., Nemc, A., Nenning, K.-H., Furtner, J., Sheffield, N. C., Datlinger, P., Peter, N., Nowosielski, M., Augustin, M., Mischkulnig, M., Ströbel, T., Alpar, D., Ergüner, B., Senekowitsch, M., Moser, P., Freyschlag, C. F., … Bock, C. (2018). The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nature Medicine. https://doi.org/10.1038/s41591-018-0156-x

    Article  Google Scholar 

  • Koohbanani, N. A., Jahanifar, M., Tajadin, N. Z., & Rajpoot, N. (2020). NuClick: A deep learning framework for interactive segmentation of microscopic images. Medical Image Analysis. https://doi.org/10.1016/j.media.2020.101771

    Article  Google Scholar 

  • Kwak, J. T., & Hewitt, S. M. (2017). Multiview boosting digital pathology analysis of prostate cancer. Computer Methods and Programs in Biomedicine, 142, 91–99.

    Google Scholar 

  • Lei, C. (2008). Development of a text mining system based on the co-occurrence of bibliographic items in literature databases. New Technology of Library and Information Service, 24(8), 70–5.

    Google Scholar 

  • Leong, F.J.W.-M., & McGee, J. . O. ’D. (2001). Automated complete slide digitization: A medium for simultaneous viewing by multiple pathologists. The Journal of Pathology. https://doi.org/10.1002/path.972

    Article  Google Scholar 

  • Lorbach, S. K., Hokamp, J. A., Quimby, J. M., & Cianciolo, R. E. (2020). Clinicopathologic characteristics, pathology, and prognosis of 77 dogs with focal segmental glomerulosclerosis. Journal of Veterinary Internal Medicine, 34(5), 1948–1956.

    Google Scholar 

  • Mittal, S., Kevin Yeh, L., Leslie, S., Kenkel, S., Kajdacsy-Balla, A., & Bhargava, R. (2018). PNAS plus: Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1719551115

    Article  Google Scholar 

  • Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega JEV, Brat DJ, Cooper LAD (2018). Predicting cancer outcomes from histology and genomics using convolutional networks. 201717139.

  • Molnar, B. (2003). Digital slide and virtual microscopy based routine and telepathology evaluation of routine gastrointestinal biopsy specimens. Journal of Clinical Pathology. https://doi.org/10.1136/jcp.56.6.433

    Article  Google Scholar 

  • Mukhopadhyay, S., Feldman, M. D., Abels, E., Ashfaq, R., Beltaifa, S., Cacciabeve, N. G., Cathro, H. P., Cheng, L., Cooper, K., Dickey, G. E., Gill, R. M., Heaton, R. P., Kerstens, R., Lindberg, G. M., Malhotra, R. K., Mandell, J. W., Manlucu, E. D., Mills, A. M., Mills, S. E., … Taylor, C. R. (2018). Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: A multicenter blinded randomized noninferiority study of 1992 cases (pivotal study). American Journal of Surgical Pathology, 42(1), 39.

    Google Scholar 

  • Nam, S., Chong, Y., Jung, C. K., Kwak, T.-Y., Lee, J. Y., Park, J., Rho, M. J., & Go, H. (2020). Introduction to digital pathology and computer-aided pathology. Journal of Pathology and Translational Medicine, 54(2), 125–134.

    Google Scholar 

  • Nordrum, I., Engum, B., Rinde, E., Finseth, A., Ericsson, H., Kearney, M., & Eide, T. J. (1991). Remote frozen section service: A telepathology project in northern Norway. Human pathology, 22(6), 514–518.

    Google Scholar 

  • Orazem, M., Oblak, I., Spanic, T., & Ratosa, I. (2020). Telemedicine in radiation oncology post-COVID-19 pandemic: There is no turning back. International Journal of Radiation Oncology Biology Physics, 108(2), 411–415.

    Google Scholar 

  • Pantanowitz, L., Evans, A. J., Pfeifer, J. D., Collins, L. C., Valenstein, P. N., Kaplan, K. J., Wilbur, D. C., & Colgan, T. J. (2011). Review of the current state of whole slide imaging in pathology. Journal of Pathology Informatics. https://doi.org/10.4103/2153-3539.83746

    Article  Google Scholar 

  • Pantanowitz, L., Sinard, J. H., Henricks, W. H., Fatheree, L. A., Carter, A. B., Contis, L., & Parwani, A. V. (2013). Validating whole slide imaging for diagnostic purposes in pathology: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Archives of Pathology and Laboratory Medicine, 137(12), 1710–1722.

    Google Scholar 

  • Park, S., Pantanowitz, L., & Parwani, A. V. (2012). Digital imaging in pathology. Clinics in Laboratory Medicine. https://doi.org/10.1016/j.cll.2012.07.006

    Article  Google Scholar 

  • Pierga, J.-Y., Bonneton, C., Vincent-Salomon, A., de Cremoux, P., Nos, C., Blin, N., Pouillart, P., Thiery, J.-P., & Magdelénat, H. (2004). Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clinical Cancer Research, 10(4), 1392–1400.

    Google Scholar 

  • Potts, S. J. (2009). Digital pathology in drug discovery and development: Multisite integration. Drug Discovery Today, 14(19–20), 935–941.

    Google Scholar 

  • Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194, 19–35.

    Google Scholar 

  • Ruifrok, A. C., & Johnston, D. A. (2001). Quantification of histochemical staining by color deconvolution. Analytical and quantitative cytology and histology, 23(4), 291–299.

    Google Scholar 

  • Scolyer, R. A. (2017). Is pathology the gold standard for diagnosing melanocytic tumors: Does it always glitter? Journal of the European Academy of Dermatology and Venereology, 31, 11–11.

    Google Scholar 

  • Steel, M., Rao, S., Ho, J., Donnellan, F., Yang, H.-M., & Schaeffer, D. F. (2019). Cytohistological diagnosis of pancreatic serous cystadenoma: A multimodal approach. Journal of Clinical Pathology, 72(9), 615–621.

    Google Scholar 

  • Steinberg, D. M., & Ali, S. Z. J. D. C. (2001). Application of virtual microscopy in clinical cytopathology. Diagnostic Cytopathology. https://doi.org/10.1002/dc.10021

    Article  Google Scholar 

  • Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., & Stumpe, M. C. (2018). Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. American Journal of Surgical Pathology. https://doi.org/10.1097/PAS.0000000000001151

    Article  Google Scholar 

  • Ting, D. S., Peng, L., Varadarajan, A. V., Keane, P. A., Burlina, P. M., Chiang, M. F., & Wong, T. Y. (2019). Deep learning in ophthalmology: The technical and clinical considerations. Progress in retinal and eye research, 72, 100759.

    Google Scholar 

  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477.

    Google Scholar 

  • Wake, R. W., Hollabaugh, R. S., & Bon, K. H. (1996). Cryosurgical ablation of the prostate for localized adenocarcinoma: A preliminary experience. Journal of Urology, 155(5), 1663–1666.

    Google Scholar 

  • Wang, S., Yang, D. M., Rong, R., Zhan, X., Fujimoto, J., Liu, H., & Xiao, G. (2019). Artificial intelligence in lung cancer pathology image analysis. Cancers, 11(11), 16.

    Google Scholar 

  • Weinstein, R. S., Bhattacharyya, A. K., Graham, A. R., & Davis, J. R. (1997). Telepathology: A ten-year progress report. Human Pathology, 28(1), 1–7.

    Google Scholar 

  • Weinstein, R. S., Bloom, K. J., & Rozek, L. S. (1987). Telepathology and the networking of pathology diagnostic services. Archives of pathology & laboratory medicine, 111(7), 646–652.

    Google Scholar 

  • Weinstein, R. S., Descour, M. R., Liang, C., Barker, G., Scott, K. M., Richter, L., & Bartels, P. H. (2004). An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study. Human pathology, 35(11), 1303–1314.

    Google Scholar 

  • Weinstein, R. S., Descour, M. R., Liang, C., Bhattacharyya, A. K., Graham, A. R., Davis, J. R., & Dunn, B. E. (2001). Telepathology Overview: From Concept to Implementation. Human pathology, 32(12), 1283–1299.

    Google Scholar 

  • Wilbur, D. C., Madi, K., Colvin, R. B., Duncan, L. M., Faquin, W. C., Ferry, J. A., Frosch, M. P., Houser, S. L., Kradin, R. L., Lauwers, G. Y., Louis, D. N., Mark, E. J., Mino-Kenudson, M., Misdraji, J., Nielsen, G. P., Pitman, M. B., Rosenberg, A. E., Neal Smith, R., Sohani, A. R., … Klietmann, W. (2009). Whole-slide imaging digital pathology as a platform for teleconsultation: a pilot study using paired subspecialist correlations. Archives of Pathology and Laboratory Medicine, 133(12), 1949–1953.

    Google Scholar 

  • Williams, S., Henricks, W. H., Becich, M. J., Toscano, M., & Carter, A. B. (2010). Telepathology for patient care: What am i getting myself into. Advances in Anatomic Pathology, 17(2), 130–149.

    Google Scholar 

  • Yang, Y., Wang, J., Ng, C. W., Ma, Y., Mo, S., Fong, E. L. S., Xing, J., Song, Z., Xie, Y., Si, K., Wee, A., Welsch, R. E., So, P. T. C., & Hanry, Y. (2018). Deep learning enables automated scoring of liver fibrosis stages. Scientific Reports. https://doi.org/10.1038/s41598-018-34300-2

    Article  Google Scholar 

  • Zarei, N., Bakhtiari, A., Korbelik, J., Carraro, A., Keyes, M., & MacAulay, C. (2017). Introducing an interactive method to improve digital pathology image segmentation case study on prostate cancer. Analytical and Quantitative Cytopathology and Histopathology, 39(1), 1–16.

    Google Scholar 

Download references

Acknowledgements

This work received financial support from the Fundamental Research Funds for the Central Universities (N171904006, N171902001, N172410006-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Zheng or Xiaoyu Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Wang, C., Zheng, S. et al. Investigating the genealogy of the literature on digital pathology: a two-dimensional bibliometric approach. Scientometrics 127, 785–801 (2022). https://doi.org/10.1007/s11192-021-04224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-04224-2

Keywords

Navigation