Abstract
Author bibliographic coupling analysis (ABCA) is an extension of bibliographic coupling theory at the author level and is widely used in mapping intellectual structures and scholarly communities. However, the assumption of equal citations and the complete dependence on explicit counts may affect its effectiveness in today’s complex context of discipline development. This research proposes a new approach that uses multiple full-text data to improve ABCA called enhanced author bibliographic coupling analysis. By mining the semantic and syntactic information of citations, the new approach considers more diverse dimensions as the basis of author bibliographic coupling strength. Comparative empirical research was then conducted in the field of oncology. The results show that the new approach can more accurately reveal the relevant relations between authors and map a more detailed domain intellectual structure.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11192-022-04333-6/MediaObjects/11192_2022_4333_Fig12_HTML.png)
Similar content being viewed by others
References
Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.
An, J., Kim, N., Kan, M.-Y., Chandrasekaran, M. K., & Song, M. (2017). Exploring characteristics of highly cited authors according to citation location and content. Journal of the Association for Information Science and Technology, 68(8), 1975–1988.
Bertin, M., Atanassova, I., Gingras, Y., & Larivière, V. (2015). The invariant distribution of references in scientific articles. Journal of the Association for Information Science and Technology, 67(1), 164–177.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
Bornmann, L., & Daniel, H. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.
Boyack, K. W., Small, H., & Klavans, R. (2013). Improving the accuracy of co-citation clustering using full text. Journal of the American Society for Information Science and Technology, 64(9), 1759–1767.
Boyack, K. W., van Eck, N. J., Colavizza, G., & Waltman, L. (2018). Characterizing in-text citations in scientific articles: A large-scale analysis. Journal of Informetrics, 12(1), 59–73.
Bu, Y., Wang, B., Huang, W. B., Che, S., & Huang, Y. (2018). Using the appearance of citations in full text on author co-citation analysis. Scientometrics, 116(1), 275–289.
Colavizza, G., Boyack, K. W., Eck, N., & Waltman, L. (2018). The closer the better: similarity of publication pairs at different co-citation levels. Journal of the Association for Information Science and Technology.
Ding, Y., Liu, X., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7(3), 583–592.
Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., & Zhai, C. (2014). Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9), 1820–1833.
Elkiss, A., Shen, S., Fader, A., Erkan, G., States, D., & Radev, D. (2007). Blind men and elephants: What do citation summaries tell us about a research article? Journal of the American Society for Information Science and Technology, 59(1), 51–62.
Gipp, B., & Beel, J. (2009). Citation proximity analysis (CPA): A new approach for identifying related work based on co-citation analysis. 12th international conference on scientometrics and informetrics (ISSI), 571–575.
Glänzel, W., & Thijs, B. (2011). Using ‘core documents’ for the representation of clusters and topics. Scientometrics, 88(1), 297–309.
Habib, R., & Afzal, M. T. (2019). Sections-based bibliographic coupling for research paper recommendation. Scientometrics, 119(2), 643–656.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis (7th ed.). Prentice Hall.
Hu, Z., Chen, C., & Liu, Z. (2013). Where are citations located in the body of scientific articles? A study of the distributions of citation locations. Journal of Informetrics, 7(4), 887–896.
Jebari, C., Herrera-Viedma, E., & Cobo, M. J. (2021). The use of citation context to detect the evolution of research topics: A large-scale analysis. Scientometrics, 126(4), 2971–2989.
Jeong, Y. K., Song, M., & Ding, Y. (2014). Content-based author co-citation analysis. Journal of Informetrics, 8(1), 197–211.
Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.
Kim, H. J., Jeong, Y. K., & Song, M. (2016). Content- and proximity-based author co-citation analysis using citation sentences. Journal of Informetrics, 10(4), 954–966.
Kumar, V., Sendhilkumar, S., & Mahalakshmi, G. S. (2017). Author similarity identification using citation context and proximity. 2017 Second international conference on recent trends and challenges in computational models (ICRTCCM).
Leydesdorff, L. (2011). BibCoupl.exe for Bibliographic Coupling among Authors. Retrieved January 21, 2021 from https://www.leydesdorff.net/software/bibcoupl/index.htm.
Liu, S., & Chen, C. (2011). The proximity of co-citation. Scientometrics, 91(2), 495–511.
Liu, S., & Chen, C. (2013). The differences between latent topics in abstracts and citation contexts of citing papers. Journal of the American Society for Information Science and Technology, 64(3), 627–639.
Liu, X., Zhang, J., & Guo, C. (2013). Full-text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852–1863.
Lu, C., Ding, Y., & Zhang, C. (2017). Understanding the impact change of a highly cited article: A content-based citation analysis. Scientometrics, 112(2), 927–945.
Ma, R. (2012). Author bibliographic coupling analysis: A test based on a Chinese academic database. Journal of Informetrics, 6(4), 532–542.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale.
Rousseau, R. (2010). Bibliographic coupling and co-citation as dual notions. The Janus faced scholar. A Festschrift in honour of Peter Ingwersen, 6(S), 173–183.
Shen, S., Zhu, D., Rousseau, R., Su, X., & Wang, D. (2019). A refined method for computing bibliographic coupling strengths. Journal of Informetrics, 13(2), 605–615.
Sombatsompop, N., Kositchaiyong, A., Markpin, T., & Inrit, S. (2006). Scientific evaluations of citation quality of international research articles in the SCI database: Thailand case study. Scientometrics, 66(3), 521–535.
Song, Y., Wu, L., & Qiu, J. (2021). A comparative study of first and all-author bibliographic coupling analysis based on scientometrics. Scientometrics, 126(2), 1125–1147.
Thijs, B. (2020). Using neural-network based paragraph embeddings for the calculation of within and between document similarities. Scientometrics, 125(2), 835–849.
Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From Louvain to Leiden: Guaranteeing well-connected communities. Scientific Reports, 9(1), 1–12.
Wang, M., Leng, D., Ren, J., & Yu, P. (2021). Generating a citation summary based on cited sentences and the implied citation emotions. IEEE Access, 9, 18042–18051.
White, H. D. (2003). Author co-citation analysis and pearson’s r. Journal of the American Society for Information Science and Technology, 54, 1250–1259.
White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.
Zhang, R., & Yuan, J. (2021). Enhanced author bibliographic coupling analysis using syntactic and semantic citation information. 18th International Conference on Scientometrics and Informetrics (ISSI), 1349–1360.
Zhang, G., Ding, Y., & Milojević, S. (2013). Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content. Journal of the American Society for Information Science and Technology, 64(7), 1490–1503.
Zhang, S., Xu, Y., & Zhang, W. (2019). Clustering scientific document based on an extended citation model. IEEE Access, 7, 57037–57046.
Zhao, D. and Strotmann, A. (2021), “Mapping knowledge domains on Wikipedia: an author bibliographic coupling analysis of traditional Chinese medicine”, Journal of Documentation, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JD-02-2021-0039.
Zhao, D., Cappello, A., & Johnston, L. (2017). Functions of uni- and multi-citations: Implications for weighted citation analysis. Journal of Data and Information Science, 2(1), 51–69.
Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.
Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 995–1006.
Zhao, D., & Strotmann, A. (2020). Telescopic and panoramic views of library and information science research 2011–2018: A comparison of four weighting schemes for author co-citation analysis. Scientometrics, 124(1), 255–270.
Acknowledgements
The paper is a substantially extended version of the ISSI2021 conference paper (Zhang and Yuan 2021). We thank Prof. Ronald Rousseau for his valuable suggestions, Dr. Yining Zhang of The First Hospital of China Medical University, Dr. Xiaoxue Zhang of Liaoning Cancer Hospital & Institute for their help in identifying and labeling topics. We gratefully acknowledge insight and feedback from two anonymous reviewers in helping us improve our study. This work is supported by LIS Outstanding Talents Introducing Program, Bureau of Development and Planning of CAS [2018] No. 12.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, R., Yuan, J. Enhanced author bibliographic coupling analysis using semantic and syntactic citation information. Scientometrics 127, 7681–7706 (2022). https://doi.org/10.1007/s11192-022-04333-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-022-04333-6