Skip to main content
Log in

AGSTA-NET: adaptive graph spatiotemporal attention network for citation count prediction

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

With the rapid development of scientific research, a large number of scientific papers are produced every year. It is very important to find influential papers quickly from the massive literature resources, which can not only help researchers identify papers with reference value, but also help scientific research management departments to allocate resources. Among the quantification measures of academic impact, citation count stands out for its frequent use in the research community. Previous studies have either treated papers as independent individuals without considering their citation relationships in the citation network or have not adequately considered the long-time dependence of citation time series. In this paper, we consider the structural features of citation networks and propose a deep learning method AGSTA-NET from the perspective of spatio-temporal fusion, which models heterogeneous citation networks formed early in the publication of a paper and predicts the citation count for an article in the next few years. AGSTA-NET contains capturing module of spatial dependence and capturing module of time dependence. It could fully dig the complex spatio-temporal information from the dynamic heterogeneous citation network by only inputting the heterogeneous citation network to the model. Meanwhile, the sub-networks designed in this paper could adaptively determine the threshold of the loss function according to the samples for better training. Experiments validate that AGSTA-NET outperforms current state-of-the-art methods in citation count prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Bin Wang Conceived and designed the analysis, collected the data, performed the analysis, wrote the paper, Feng Wu Collected the data, contributed data or analysis tools, LuKui Shi Conceived and designed the analysis, wrote the paper.

Corresponding author

Correspondence to Lukui Shi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wu, F. & Shi, L. AGSTA-NET: adaptive graph spatiotemporal attention network for citation count prediction. Scientometrics 128, 511–541 (2023). https://doi.org/10.1007/s11192-022-04541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04541-0

Keywords

Navigation