Skip to main content
Log in

Impact of field of study (FoS) on authors’ citation trend

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

A significant aspect in scientific research is evaluating the impact of scientific contribution of an author. Authors select a particular Field of Study (FoS) to work in, based on their interest and/or by considering the currently hot topics. One aspect that may support in the selection of their research area is the future impact of their work. There are multiple studies in literature that focus on FoS trend detection and analysis etc. However, the previous work contains a gap, that is, effect of following an FoS on citation trend of scientific authors is not explored. The outcome of such a study may help a researcher in deciding his future research direction. In this research, we have proposed an approach that detects the FoS of an individual author in his/her career years by characterizing the focus of his work. Citation trend of an author based on yearly citation count is computed. The trend of an FoS is computed by combining citation trend of authors belonging to same FoS. This trend is used as an input to predict next years’ citation counts, by using Multiple Linear Regression and Artificial Neural Network. The scientific articles published from 1950 to 2017 in the domain of Computer Science are used from Microsoft Academic Graph dataset. The experimental results show that there is higher similarity between citation trend of authors that belong to the same FoS as compared to different FoS and also resembles more to the overall citation trend of that particular FoS. Hence concluded that FoS trend following has a certain impact on the citation count of authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://academic.research.microsoft.com.

References

  • Allan, J., Carbonell, J. G., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic detection and tracking pilot study final report. In Proceedings of the DARPA broadcast news transcription and understanding workshop.

  • Amjad, T., Ding, Y., Xu, J., Zhang, C., Daud, A., Tang, J., & Song, M. (2017). Standing on the shoulders of giants. Journal of Informetrics, 11(1), 307–323.

    Article  Google Scholar 

  • Blei, D., & Lafferty, J. (2006). Correlated topic models. Advances in Neural Information Processing Systems, 18, 147.

    Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Bolelli, L., Ertekin, Ş, & Giles, C. L. (2009). Topic and trend detection in text collections using latent dirichlet allocation. European conference on information retrieval (pp. 776–780). Berlin: Springer.

    Google Scholar 

  • Bourdieu, P. (1975). The specificity of the scientific field and the social conditions of the progress of reason. Social Science Information, 14(6), 19–47.

    Article  Google Scholar 

  • Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.

    Article  Google Scholar 

  • Clauset, A., Larremore, D. B., & Sinatra, R. (2017). Data-driven predictions in the science of science. Science, 355(6324), 477–480.

    Article  Google Scholar 

  • De Domenico, M., Omodei, E., & Arenas, A. (2016). Quantifying the diaspora of knowledge in the last century. Applied Network Science, 1(1), 1–13.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.

    Article  Google Scholar 

  • Deville, P., Wang, D., Sinatra, R., Song, C., Blondel, V. D., & Barabási, A. L. (2014). Career on the move: Geography, stratification and scientific impact. Scientific Reports, 4(1), 1–7.

    Article  Google Scholar 

  • Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 404, 165–187.

    Article  Google Scholar 

  • Effendy, S., & Yap, R. H. (2017, April). Analysing trends in computer science research: A preliminary study using the microsoft academic graph. In Proceedings of the 26th international conference on world wide web companion (pp. 1245–1250).

  • Eichmann, D., Ruiz, M., Srinivasan, P., Street, N., Culy, C., & Menczer, F. (1999, February). A cluster-based approach to tracking, detection and segmentation of broadcast news. In Proceedings of the DARPA Broadcast News Workshop (pp. 69–76).

  • Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, A. L. (2018). Science of science. Science, 359(6379), eaao0185.

    Article  Google Scholar 

  • Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and innovation in scientists’ research strategies. American Sociological Review, 80(5), 875–908.

    Article  Google Scholar 

  • Ho, J. C., Saw, E. C., Lu, L. Y., & Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66–79.

    Article  Google Scholar 

  • Hofmann, T. (1999, August). Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50–57).

  • Hoonlor, A., Szymanski, B. K., & Zaki, M. J. (2013). Trends in computer science research. Communications of the ACM, 56(10), 74–83.

    Article  Google Scholar 

  • Jia, T., Wang, D., & Szymanski, B. K. (2017). Quantifying patterns of research-interest evolution. Nature Human Behaviour, 1(4), 1–7.

    Article  Google Scholar 

  • Jones, B. F., & Weinberg, B. A. (2011). Age dynamics in scientific creativity. Proceedings of the National Academy of Sciences, 108(47), 18910–18914.

    Article  Google Scholar 

  • Kleinberg, J. (2002). Bursty and hierarchical structure in streams, data mining and knowledge discovery. In: Elected papers from the 8th ACM SIGKDD International Conference on Knowledge I Discovery and Data Mining? Part (Vol. 7, No. 4, pp. 372–397).

  • Kuhn, T., Perc, M., & Helbing, D. (2014). Inheritance patterns in citation networks reveal scientific memes. Physical Review X, 4(4), 041036.

    Article  Google Scholar 

  • Liu, L., Wang, Y., Sinatra, R., Giles, C. L., Song, C., & Wang, D. (2018). Hot streaks in artistic, cultural, and scientific careers. Nature, 559(7714), 396–399.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Petersen, A. M. (2015). Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences, 112(34), E4671–E4680.

    Article  Google Scholar 

  • Petersen, A. M. (2018). Multiscale impact of researcher mobility. Journal of the Royal Society Interface, 15(146), 20180580.

    Article  Google Scholar 

  • Petersen, A. M., Fortunato, S., Pan, R. K., Kaski, K., Penner, O., Rungi, A., Riccaboni, M., Stanley, H. E., & Pammolli, F. (2014). Reputation and impact in academic careers. Proceedings of the National Academy of Sciences, 111(43), 15316–15321.

    Article  Google Scholar 

  • Petersen, A. M., Riccaboni, M., Stanley, H. E., & Pammolli, F. (2012). Persistence and uncertainty in the academic career. Proceedings of the National Academy of Sciences, 109(14), 5213–5218.

    Article  Google Scholar 

  • Qi, M., Zeng, A., Li, M., Fan, Y., & Di, Z. (2017). Standing on the shoulders of giants: The effect of outstanding scientists on young collaborators’ careers. Scientometrics, 111(3), 1839–1850.

    Article  Google Scholar 

  • Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2012). The author-topic model for authors and documents. arXiv Preprint. https://doi.org/10.48550/arXiv.1207.4169

    Article  Google Scholar 

  • Rzhetsky, A., Foster, J. G., Foster, I. T., & Evans, J. A. (2015). Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences, 112(47), 14569–14574.

    Article  Google Scholar 

  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.

    Article  Google Scholar 

  • Schultz, J. M., & Liberman, M. (1999, February). Topic detection and tracking using idf-weighted cosine coefficient. In: Proceedings of the DARPA broadcast news workshop (Vol. 1892192). San Francisco: Morgan Kaufmann.

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775.

    Article  Google Scholar 

  • Sinatra, R., Wang, D., Deville, P., Song, C., & Barabási, A. L. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312), aaf5239.

    Article  Google Scholar 

  • Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B. J., & Wang, K. (2015, May). An overview of microsoft academic service (mas) and applications. In: Proceedings of the 24th international conference on world wide web (pp. 243–246).

  • Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004, August). Probabilistic author-topic models for information discovery. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 306–315).

  • Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008, August). Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 990–998).

  • Wang, C., Blei, D., & Heckerman, D. (2012). Continuous time dynamic topic models. arXiv Preprint. https://doi.org/10.48550/arXiv.1206.3298

    Article  Google Scholar 

  • Zeng, A., Shen, Z., Zhou, J., Fan, Y., Di, Z., Wang, Y., Stanley, H. E., & Havlin, S. (2019). Increasing trend of scientists to switch between topics. Nature Communications, 10(1), 1–11.

    Article  Google Scholar 

  • Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714, 1–73.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samreen Ayaz.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, L., Masood, N. & Ayaz, S. Impact of field of study (FoS) on authors’ citation trend. Scientometrics 128, 2557–2576 (2023). https://doi.org/10.1007/s11192-023-04660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04660-2

Keywords

Navigation