Skip to main content
Log in

The association between prior knowledge and the disruption of an article

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Disruptive research that reveals an important innovation in science can reshape existing pathways. This paper studies the relationship between the prior knowledge the research builds upon and disruption in science. To measure the disruption of an article and operationalize prior knowledge, we use the disruption index (\(D\ index\)) and examine six characteristics of references of an article: amount, recency, impact, disruption, novelty and homogeneity. Ordinary least squares regression is conducted on a set of 1,310,837 articles from 2001 to 2010 from the PubMed knowledge graph (PKG) dataset. Our primary finding shows that the recency and homogeneity of prior knowledge are negatively associated with disruption, while we found positive relationships between the amount, impact, disruption and novel combinations of prior knowledge and disruption. Our robustness checks further confirm these conclusions. This study deepens our understanding of the association between prior knowledge and disruption, and has significant implications for researchers to search for and synthesize different types of prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azoulay, P. (2019). Small-team science is beautiful. Nature, 566(7744), 330–332.

    Article  Google Scholar 

  • Becerra, A. Z., Aquina, C. T., Hayden, D. M., & Torquati, A. F. (2021). The top 100 most disruptive publications in academic surgery journals: 1954–2014. The American Journal of Surgery, 221(3), 614–617.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  • Bornmann, L., de Moya Anegón, F., & Leydesdorff, L. (2010). Do scientific advancements lean on the shoulders of giants? A bibliometric investigation of the Ortega hypothesis. PloS one, 5(10), e13327.

    Article  Google Scholar 

  • Bornmann, L., Devarakonda, S., Tekles, A., & Chacko, G. (2020). Are disruption index indicators convergently valid? The comparison of several indicator variants with assessments by peers. Quantitative Science Studies, 1(3), 1242–1259.

    Article  Google Scholar 

  • Bornmann, L., & Tekles, A. (2019a). Disruption index depends on length of citation window. Profesional De La Información (EPI), 28(2), e280207.

    Google Scholar 

  • Bornmann, L., & Tekles, A. (2019b). Disruptive papers published in scientometrics. Scientometrics, 120(1), 331–336.

    Article  Google Scholar 

  • Boyack, K. W., & Klavans, R. (2014). Atypical combinations are confounded by disciplinary effects. In Proceedings of the 19th International conference on science and technology indicators. 3–5 September, Leiden, The Netherlands.

  • Bu, Y., Murray, D. S., Xu, J., Ding, Y., Ai, P., Shen, J., & Yang, F. (2018). Analyzing scientific collaboration with “giants” based on the milestones of career. Proceedings of the Association for Information Science and Technology, 55(1), 29–38.

    Article  Google Scholar 

  • Cammarano, A., Michelino, F., & Caputo, M. (2022). Extracting firms’ R&D processes from patent data to study inbound and coupled open innovation. Creativity and Innovation Management, 31(2), 322–339.

    Article  Google Scholar 

  • Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.

    Article  Google Scholar 

  • Chen, J., Shao, D., & Fan, S. (2021a). Destabilization and consolidation: Conceptualizing, measuring, and validating the dual characteristics of technology. Research Policy, 50(1), 104115.

    Article  Google Scholar 

  • Chen, K. Y., Altinay, L., Chen, P. Y., & Dai, Y. D. (2021b). Market knowledge impacts on product and process innovation: Evidence from travel agencies. Tourism Review, 77(1), 271–286.

    Article  Google Scholar 

  • Costas, R., van Leeuwen, T. N., & Bordons, M. (2012). Referencing patterns of individual researchers: Do top scientists rely on more extensive information sources? Journal of the American Society for Information Science and Technology, 63(12), 2433–2450.

    Article  Google Scholar 

  • Dahlin, K. B., Weingart, L. R., & Hinds, P. J. (2005). Team diversity and information use. Academy of Management Journal, 48(6), 1107–1123.

    Article  Google Scholar 

  • Didegah, F., & Thelwall, M. (2013a). Determinants of research citation impact in nanoscience and nanotechnology. Journal of the American Society for Information Science and Technology, 64(5), 1055–1064.

    Article  Google Scholar 

  • Didegah, F., & Thelwall, M. (2013b). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.

    Article  Google Scholar 

  • Dunaiski, M., Visser, W., & Geldenhuys, J. (2016). Evaluating paper and author ranking algorithms using impact and contribution awards. Journal of Informetrics, 10(2), 392–407.

    Article  Google Scholar 

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Funk, R. J., & Owen-Smith, J. (2017). A dynamic network measure of technological change. Management Science, 63(3), 791–817.

    Article  Google Scholar 

  • Heeley, M. B., & Jacobson, R. (2008). The recency of technological inputs and financial performance. Strategic Management Journal, 29(7), 723–744.

    Article  Google Scholar 

  • Hohberger, J. (2016). Does it pay to stand on the shoulders of giants? An analysis of the inventions of star inventors in the biotechnology sector. Research Policy, 45(3), 682–698.

    Article  Google Scholar 

  • Hur, W., & Oh, J. (2021). A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents. Research Policy, 50(1), 104117.

    Article  Google Scholar 

  • Ioannidis, J., Boyack, K. W., Small, H., Sorensen, A. A., & Klavans, R. (2014). Bibliometrics: Is your most cited work your best? Nature, 514(7524), 561–562.

    Article  Google Scholar 

  • Jones, B. F. (2009). The burden of knowledge and the “death of the renaissance man”: Is innovation getting harder? The Review of Economic Studies, 76(1), 283–317.

    Article  MATH  Google Scholar 

  • Jung, H. J., & Lee, J. J. (2016). The quest for originality: A new typology of knowledge search and breakthrough inventions. Academy of Management Journal, 59(5), 1725–1753.

    Article  Google Scholar 

  • Kang, B., & Nabeshima, K. (2021). National origin diversity and innovation performance: The case of Japan. Scientometrics, 126(6), 5333–5351.

    Article  Google Scholar 

  • Katila, R. (2002). New product search over time: Past ideas in their prime? Academy of Management Journal, 45(5), 995–1010.

    Article  Google Scholar 

  • Kelley, D. J., Ali, A., & Zahra, S. A. (2013). Where do breakthroughs come from? Characteristics of high-potential inventions. Journal of Product Innovation Management, 30(6), 1212–1226.

    Article  Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (Vol. 111). University of Chicago Press.

    Google Scholar 

  • Kwon, U., & Geum, Y. (2020). Identification of promising inventions considering the quality of knowledge accumulation: A machine learning approach. Scientometrics, 125(3), 1877–1897.

    Article  Google Scholar 

  • Lee, C. J., Sugimoto, C. R., Zhang, G., & Cronin, B. (2013). Bias in peer review. Journal of the American Society for Information Science and Technology, 64(1), 2–17.

    Article  Google Scholar 

  • Lee, Y. N. (2015). Evaluating and extending innovation indicators for innovation policy. Research Evaluation, 24(4), 471–488.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. N., Walsh, J. P., & Wang, J. (2015). Creativity in scientific teams: Unpacking novelty and impact. Research Policy, 44(3), 684–697.

    Article  Google Scholar 

  • Liang, G., Hou, H., Ding, Y., & Hu, Z. (2020). Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country. Journal of Informetrics, 14(3), 101053.

    Article  Google Scholar 

  • Liang, Z., Mao, J., & Li, G. (2023). Bias against scientific novelty: A prepublication perspective. Journal of the Association for Information Science and TechnoloGy, 74(1), 99–114.

    Article  Google Scholar 

  • Lin, Y., Evans, J. A., & Wu, L. (2022). New directions in science emerge from disconnection and discord. Journal of Informetrics, 16(1), 101234.

    Article  Google Scholar 

  • Liu, H., Mihm, J., & Sosa, M. E. (2018). Where do stars come from? The role of star vs. nonstar collaborators in creative settings. Organization Science, 29(6), 1149–1169.

    Article  Google Scholar 

  • Lyu, D., Gong, K., Ruan, X., Cheng, Y., & Li, J. (2021). Does research collaboration influence the “disruption” of articles? Evidence from Neurosciences. Scientometrics, 126(1), 287–303.

    Google Scholar 

  • Mammola, S., Fontaneto, D., Martínez, A., & Chichorro, F. (2021). Impact of the reference list features on the number of citations. Scientometrics, 126(1), 785–799.

    Article  Google Scholar 

  • Menard, S. (2002). Applied logistic regression analysis (2nd ed.). Sage.

    Book  Google Scholar 

  • Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. University of Chicago press.

    Google Scholar 

  • Min, C., Bu, Y., Wu, D., Ding, Y., & Zhang, Y. (2021). Identifying citation patterns of scientific breakthroughs: A perspective of dynamic citation process. Information Processing & Management, 58(1), 102428.

    Article  Google Scholar 

  • Mukherjee, S., Romero, D. M., Jones, B., & Uzzi, B. (2017). The nearly universal link between the age of past knowledge and tomorrow’s breakthroughs in science and technology: The hotspot. Science Advances, 3(4), e1601315.

    Article  Google Scholar 

  • Nagano, M. S., Stefanovitz, J. P., & Vick, T. E. (2014). Innovation management processes, their internal organizational elements and contextual factors: An investigation in Brazil. Journal of Engineering and Technology Management, 33, 63–92.

    Article  Google Scholar 

  • Nerkar, A. (2003). Old is gold? The value of temporal exploration in the creation of new knowledge. Management Science, 49(2), 211–229.

    Article  Google Scholar 

  • Onodera, N., & Yoshikane, F. (2014). Factors affecting citation rates of research articles. Journal of the Association for Information Science and Technology, 66(4), 739–764.

    Article  Google Scholar 

  • Papazoglou, M. E., & Nelles, J. (2022). Keeping pace with technological change: Insights into the recency of internal knowledge inputs. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-022-01023-9

    Article  Google Scholar 

  • Petruzzelli, A. M., Ardito, L., & Savino, T. (2018). Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size. Journal of Business Research, 86, 190–201.

    Article  Google Scholar 

  • Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Roper, S., & Hewitt-Dundas, N. (2015). Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data. Research Policy, 44(7), 1327–1340.

    Article  Google Scholar 

  • Ruan, X., Ao, W., Lyu, D., Cheng, Y., & Li, J. (2023). Effect of the topic-combination novelty on the disruption and impact of scientific articles: Evidence from PubMed. Journal of Information Science. https://doi.org/10.1177/01655515231161133

    Article  Google Scholar 

  • Ruan, X., Lyu, D., Gong, K., Cheng, Y., & Li, J. (2021). Rethinking the disruption index as a measure of scientific and technological advances. Technological Forecasting and Social Change, 172, 121071.

    Article  Google Scholar 

  • Schilling, M. A., & Green, E. (2011). Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences. Research Policy, 40(10), 1321–1331.

    Article  Google Scholar 

  • Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research Policy, 39(8), 1051–1059.

    Article  Google Scholar 

  • Schumpeter, J. A. (1939). Business cycles: A theoretical, historical, and statistical analysis of the capitalist process. McGraw-Hill.

    Google Scholar 

  • Shi, X., Adamic, L. A., Tseng, B. L., & Clarkson, G. S. (2009). The impact of boundary spanning scholarly publications and patents. PloS one, 4(8), e6547.

    Article  Google Scholar 

  • Small, H. (2004). Why authors think their papers are highly cited. Scientometrics, 60(3), 305–316.

    Article  Google Scholar 

  • Subramanian, A. M., Bo, W., & Kah-Hin, C. (2018). The role of knowledge base homogeneity in learning from strategic alliances. Research Policy, 47(1), 158–168.

    Article  Google Scholar 

  • Tahamtan, I., & Bornmann, L. (2019). What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018. Scientometrics, 121(3), 1635–1684.

    Article  Google Scholar 

  • Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.

    Article  Google Scholar 

  • Teplitskiy, M., Peng, H., Blasco, A., & Lakhani, K. R. (2022). Is novel research worth doing? Evidence from peer review at 49 journals. Proceedings of the National Academy of Sciences, 119(47), e2118046119.

    Article  Google Scholar 

  • Tijssen, R., Visser, M., & van Leeuwen, T. (2002). Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference? Scientometrics, 54(3), 381–397.

    Article  Google Scholar 

  • Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.

    Article  Google Scholar 

  • Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research Policy, 45(3), 707–723.

    Article  Google Scholar 

  • Veugelers, R., & Wang, J. (2019). Scientific novelty and technological impact. Research Policy, 48(6), 1362–1372.

    Article  Google Scholar 

  • Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., Rafols, I., & Börner, K. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.

    Article  Google Scholar 

  • Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.

    Article  Google Scholar 

  • Wang, J., Veugelers, R., & Stephan, P. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), 1416–1436.

    Article  Google Scholar 

  • Wang, S., Ma, Y., Mao, J., Bai, Y., Liang, Z., & Li, G. (2023a). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74(2), 150–167.

    Article  Google Scholar 

  • Wang, Y., Li, N., Zhang, B., Huang, Q., Wu, J., & Wang, Y. (2023b). The effect of structural holes on producing novel and disruptive research in physics. Scientometrics, 128(3), 1801–1823.

    Article  Google Scholar 

  • Whalen, R. (2018). Boundary spanning innovation and the patent system: Interdisciplinary challenges for a specialized examination system. Research Policy, 47(7), 1334–1343.

    Article  Google Scholar 

  • Winnink, J. J., Tijssen, R. J., & Van Raan, A. F. J. (2019). Searching for new breakthroughs in science: How effective are computerised detection algorithms? Technological Forecasting and Social Change, 146, 673–686.

    Article  Google Scholar 

  • Wu, Q., & Yan, Z. (2019). Solo citations, duet citations, and prelude citations: New measures of the disruption of academic papers. Retrieved from https://arxiv.org/abs/1905.03461.

  • Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744), 378–382.

    Article  Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Xu, H., Luo, R., Winnink, J., Wang, C., & Elahi, E. (2022). A methodology for identifying breakthrough topics using structural entropy. Information Processing & Management, 59(2), 102862.

    Article  Google Scholar 

  • Xu, J., Kim, S., Song, M., Jeong, M., Kim, D., Kang, J., Rousseau, J. F., Li, X., Xu, W., Torvik, V. I., Bu, Y., Chen, C., Ebeid, I. A., & Ding, Y. (2020). Building a PubMed knowledge graph. Scientific Data, 7(1), 1–15.

    Article  Google Scholar 

  • Xu, L., Dellaportas, S., & Wang, J. (2021). A study of interdisciplinary accounting research: Analysing the diversity of cited references. Accounting & Finance, 62(2), 2131–2162.

    Article  Google Scholar 

  • Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In Proceedings of the 12th ACM/IEEE-CS joint conference on digital libraries (pp. 51–60). 10–14 June, Washington DC, USA.

  • Zeng, A., Fan, Y., Di, Z., Wang, Y., & Havlin, S. (2021). Fresh teams are associated with original and multidisciplinary research. Nature Human Behaviour, 5(10), 1314–1322.

    Article  Google Scholar 

  • Zhao, Z., Bu, Y., & Li, J. (2021). Characterizing scientists leaving science before their time: Evidence from mathematics. Information Processing & Management, 58(5), 102661.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Social Science Foundation of China Grant (21ATQ007). We thank Professor Jiang Li at Nanjing University for his constructive suggestions.

Funding

National Social Science Fund of China, 21ATQ007, Ying Cheng

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, L., Lyu, D., Ruan, X. et al. The association between prior knowledge and the disruption of an article. Scientometrics 128, 4731–4751 (2023). https://doi.org/10.1007/s11192-023-04751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04751-0

Keywords

Navigation