Skip to main content
Log in

Features, techniques and evaluation in predicting articles’ citations: a review from years 2010–2023

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Robust findings of citations have a positive impact on researchers and significantly contribute to academic development. As a paper is cited more frequently or used as a reference in other articles, its citation count increases. Papers with higher citations tend to be more influential than those less cited. Research on predicting citation counts has evolved throughout the year in various fields. However, despite its recent growth, research on identifying commonly used features and techniques still lacks a comprehensive literature analysis. The present study addresses this gap and identifies frequently used features and existing techniques and their evaluation process for predicting an article’s citations. This study reviewed 150 articles from 2010 to 2023, and selected 107 based on established exclusion and inclusion criteria. It provides an overview of publication features and the standard techniques used for their identification to facilitate improvements in this field. The findings indicate that previous works frequently used (i) selected features such as paper features and citation features in predicting citations and (ii) machine learning techniques that are commonly applied to predict article citations. These findings can provide beneficial information for researchers aiming to enhance their papers and maximize their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramo, G., D’Angelo, C. A., & Felici, G. (2019). Predicting publication long-term impact through a combination of early citations and journal impact factor. Journal of Informetrics, 13(1), 32–49. https://doi.org/10.1016/j.joi.2018.11.003

    Article  Google Scholar 

  • Abrishami, A., & Aliakbary, S. (2019). Predicting citation counts based on deep neural network learning techniques. Journal of Informetrics, 13(2), 485–499. https://doi.org/10.1016/j.joi.2019.02.011

    Article  Google Scholar 

  • Adegbola, M. (2013). Scholarly tailgating defined: A diverse, giant network. The ABNF Journal: Official Journal of the Association of Black Nursing Faculty in Higher Education, Inc, 24 (1), 17.

  • Akella, A. P., et al. (2021). Early indicators of scientific impact: Predicting citations with altmetrics. Journal of Informetrics, 15(2), 101128.

    Article  Google Scholar 

  • Aljohani, N. R., Fayoumi, A., & Hassan, S. U. (2021). An in-text citation classification predictive model for a scholarly search system. Scientometrics, 126(7), 5509–5529.

  • Amjad, T., Abbasi, R. A., Daud, A., Imran, F., & Khan, S. (2019). Prediction of rising stars from Pakistani research communities. 2018 14th International Conference on Emerging Technologies, ICET 2018, 1–6. https://doi.org/10.1109/ICET.2018.8603661

  • Asaad, M., Howell, S. M., Rajesh, A., Meaike, J., & Tran, N. V. (2020). Altmetrics in plastic surgery journals: Does it correlate with citation count? Aesthetic Surgery Journal, 40(11), NP628–NP635.

    Article  Google Scholar 

  • Ayaz, S., Masood, N., & Islam, M. A. (2018). Predicting scientific impact based on h-index. Scientometrics, 114(3), 993–1010. https://doi.org/10.1007/s11192-017-2618-1

    Article  Google Scholar 

  • Baba, T., Baba, K., Gervasi, O., Murgante, B., Misra, S., Stankova, E., et al. (2018). Computational Science and Its Applications – ICCSA 2018 Citation Count Prediction Using Non-technical Terms in Abstracts (pp. 366–337). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-95162-1_25

  • Baba, T., Baba, K., & Ikeda, D. (2019). Citation CountPrediction using Abstracts. Journal of Web Engineering, 18(1), 207–228. https://doi.org/10.13052/jwe1540-9589.18136

    Article  Google Scholar 

  • Bai, X., Zhang, F., & Lee, I. (2019). Predicting the citations of scholarly paper. Journal of Informetrics, 13(1), 407–418. https://doi.org/10.1016/j.joi.2019.01.010

    Article  Google Scholar 

  • Bailey, C., Kale, B., Walker, J., Siravuri, H. V., Alhoori, H., & Papka, M. E. (2017, June). Exploring features for predicting policy citations. In 2017 ACM/IEEE joint conference on digital libraries (JCDL), 2017 (pp. 1–2). IEEE.

  • Beel, J., & Gipp, B. (2009). Google Scholar's ranking algorithm: The impact of citation counts (An empirical study). In 2009 Third International Conference on Research Challenges in Information Science (pp. 439–446). IEEE. https://doi.org/10.1109/RCIS.2009.5089308

  • Bhat, H. S., Huang, L. H., Rodriguez, S., Dale, R., &Heit, E. (2016). Citation prediction using diverse features. In Proceedings—15th IEEE international conference on data mining workshop, ICDMW 2015, 2016 (pp. 589–596). https://doi.org/10.1109/ICDMW.2015.131

  • Bornmann, L., Leydesdorff, L., & Wang, J. (2014). How to improve the prediction based on citation impact percentiles for years shortly after the publication date? Journal of Informetrics, 8(1), 175–180. https://doi.org/10.1016/j.joi.2013.11.005

    Article  Google Scholar 

  • Bornmann, L., & Williams, R. (2013). How to calculate the practical significance of citation impact differences? An empirical example from evaluative institutional bibliometrics using adjusted predictions and marginal effects. Journal of Informetrics, 7(2), 562–574. https://doi.org/10.1016/j.joi.2013.02.005

    Article  Google Scholar 

  • Bouabid, H. (2011). Revisiting citation aging: A model for citation distribution and life-cycle prediction. Scientometrics, 88(1), 199–211. https://doi.org/10.1007/s11192-011-0370-5

    Article  Google Scholar 

  • Brizan, D. G., Gallagher, K., Jahangir, A., & Brown, T. (2016). Predicting citation patterns: Defining and determining influence. Scientometrics, 108(1), 183–200. https://doi.org/10.1007/s11192-016-1950-1

    Article  Google Scholar 

  • Bruns, S. B., & Stern, D. I. (2016). Research assessment using early citation information. Scientometrics, 108, 917–935.

    Article  Google Scholar 

  • Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., & Mukherjee, A. (2014). Towards a stratified learning approach to predict future citation counts. In Proceedings of the ACM/IEEE joint conference on digital libraries, 2014 (pp. 351–360). https://doi.org/10.1109/JCDL.2014.6970190

  • Chen, J., & Zhang, C. (2015). Predicting citation counts of papers. In Proceedings of 2015 IEEE 14th international conference on cognitive informatics and cognitive computing, ICCI*CC 2015, 2015 (pp. 434–440). https://doi.org/10.1109/ICCI-CC.2015.7259421

  • Daud, A., Ahmed, W., Amjad, T., Nasir, J. A., Aljohani, N. R., Abbasi, R. A., & Ahmad, I. (2017). Who will cite you back? Reciprocal link prediction in citation networks. Library Hi Tech, 35(4), 509–520.

    Article  Google Scholar 

  • Daud, A., Amjad, T., Siddiqui, M. A., Aljohani, N. R., Abbasi, R. A., & Aslam, M. A. (2019). Correlational analysis of topic specificity and citations count of publication venues. Library Hi Tech, 37(1), 8–18.

    Article  Google Scholar 

  • Daud, A., Song, M., Hayat, M. K., Amjad, T., Abbasi, R. A., Dawood, H., & Ghani, A. (2020). Finding rising stars in bibliometric networks. Scientometrics, 124, 633–661.

    Article  Google Scholar 

  • Dong, Y., Johnson, R. A., & Chawla, N. V. (2015). Will this paper increase your h-index? In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 9286, pp. 259–263). https://doi.org/10.1007/978-3-319-23461-8_26

  • Fu, L. D., & Aliferis, C. F. (2010). Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature. Scientometrics, 85(1), 257–270. https://doi.org/10.1007/s11192-010-0160-5

    Article  Google Scholar 

  • García-Pérez, M. A. (2013). Limited validity of equations to predict the future h index. Scientometrics, 96(3), 901–909. https://doi.org/10.1007/s11192-013-0979-7

    Article  Google Scholar 

  • Garfield, E. (1998). Long-term vs. short-term journal impact: does it matter. Scientist, 12(3), 11–12.

  • Gogoglou, A., & Manolopoulos, Y. (2017). Predicting the evolution of scientific output. In Computational collective intelligence: 9th International conference, ICCCI 2017, Nicosia, Cyprus, September 27–29, 2017, Proceedings, Part I 9 (pp. 244–254). Springer.

  • Guba, K., & Tsivinskaya, A. (2023). Expert judgments versus publication-based metrics: Do the two methods produce identical results in measuring academic reputation? Journal of Documentation, 79(1), 127–143.

    Article  Google Scholar 

  • Gusenbauer, M., & Haddaway, N. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed and 26 other Resources (OPEN ACCESS). Research Synthesis Methods, 11, 181–217. https://doi.org/10.1002/jrsm.1378

    Article  Google Scholar 

  • Ha, L., Jiang, W., Bi, C., Zhang, R., Zhang, T., & Wen, X. (2016). How online usage of subscription-based journalism and mass communication research journal articles predicts citations. Learned Publishing, 29(3), 183–192. https://doi.org/10.1002/leap.1036

    Article  Google Scholar 

  • Haslam, N., & Koval, P. (2010). Predicting long-term citation impact of articles in social and personality psychology. Psychological Reports, 106(3), 891–900. https://doi.org/10.2466/pr0.106.3.891-900

    Article  Google Scholar 

  • Hönekopp, J., & Khan, J. (2012). Future publication success in science is better predicted by traditional measures than by the h index. Scientometrics, 90(3), 843–853. https://doi.org/10.1007/s11192-011-0551-2

    Article  Google Scholar 

  • Hou, L., Wu, Q., & Xie, Y. (2022). Does early publishing in top journals really predict long-term scientific success in the business field? Scientometrics, 127(11), 6083–6107.

    Article  Google Scholar 

  • Ibáñez, A., Bielza, C., & Larrañaga, P. (2014). Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals. Neurocomputing, 135, 42–52. https://doi.org/10.1016/j.neucom.2013.08.042

    Article  Google Scholar 

  • Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering.

  • Kosteas, V. D. (2018). Predicting long-run citation counts for articles in top economics journals. Scientometrics, 107(3), 1395–1412. https://doi.org/10.1007/s11192-018-2703-0

    Article  Google Scholar 

  • Kuo, Y. C., Chien, T. W., Kuo, S. C., Yeh, Y. T., Lin, J. C. J., & Fong, Y. (2020). Predicting article citations using data of 100 top-cited publications in the journal Medicine since 2011: A bibliometric analysis. Medicine, 99(44), e22885.

    Article  Google Scholar 

  • Lee, D. H. (2019). Predictive power of conference-related factors on citation rates of conference papers. Scientometrics, 118(1), 281–304.

    Article  MathSciNet  Google Scholar 

  • Lee, D. (2020). Author-related factors predicting citation counts of conference papers: Focusing on computer and information science. The Electronic Library, 38(3), 463–476. https://doi.org/10.1108/EL-10-2019-0253

  • Lee, D. H., & Brusilovsky, P. (2019). The first impression of conference papers: Does it matter in predicting future citations? Journal of the Association for Information Science and Technology, 70(1), 83–95. https://doi.org/10.1002/asi.24100

    Article  Google Scholar 

  • Li, C. T., Lin, Y. J., Yan, R., & Yeh, M. Y. (2015). Trend-based citation count prediction for research articles. In Pacific–Asia conference on knowledge discovery and data mining, 2015 (pp. 659–671). Springer. https://doi.org/10.1007/978-3-319-18038-0_51

  • Llewellyn, N. M., & Nehl, E. J. (2022). Predicting citation impact from altmetric attention in clinical and translational research: Do big splashes lead to ripple effects? Clinical and Translational Science, 15(6), 1387–1392.

    Article  Google Scholar 

  • Lokker, C., McKibbon, K. A., McKinlay, R. J., Wilczynski, N. L., & Haynes, R. B. (2008). Prediction of citation counts for clinical articles at two years using data available within three weeks of publication: Retrospective cohort study. BMJ, 336(7645), 655–657. https://doi.org/10.1136/bmj.39482.526713.BE

    Article  Google Scholar 

  • Lortie, C. J., Aarssen, L. W., Budden, A. E., & Leimu, R. (2013). Do citations and impact factors relate to the real numbers in publications? A case study of citation rates, impact, and effect sizes in ecology and evolutionary biology. Scientometrics, 94(2), 675–682. https://doi.org/10.1007/s11192-012-0822-6

    Article  Google Scholar 

  • Lu, H., Zhu, Y. F., Lin, Q. K., Wang, T., Niu, Z. D., & Herrera-Viedma, E. (2022). Heterogeneous knowledge learning of predictive academic intelligence in transportation. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3737–3755. https://doi.org/10.1109/tits.2020.3041904

    Article  Google Scholar 

  • Ma, A., et al. (2021). A deep-learning based citation count prediction model with paper metadata semantic features. Scientometrics, 126(8), 6803–6823.

    Article  Google Scholar 

  • Madani, F., Zwick, M., & Daim, T. (2018). Keyword-based patent citation prediction via information theory. International Journal of General Systems, 47(8), 821–841. https://doi.org/10.1080/03081079.2018.1524892

    Article  Google Scholar 

  • Mahalakshmi, G. S., Sendhilkumar, S., Jancy, P., & Easwarakumar, K. S. (2020). A neural learning approach for prediction of research citations using article semantics. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 816–819). IEEE. https://doi.org/10.1109/ICACCS48705.2020.9074263

  • Maleki, A., Abbaspour, J., Jowkar, A., & Sotudeh, H. (2023). Role of citation and non-citation metrics in predicting the educational impact of textbooks. Library Hi Tech.

  • Mammola, S., et al. (2021). Impact of the reference list features on the number of citations. Scientometrics, 126(1), 785–799.

    Article  Google Scholar 

  • Mammola, S., Piano, E., Doretto, A., Caprio, E., & Chamberlain, D. (2022). Measuring the influence of non-scientific features on citations. Scientometrics, 127(7), 4123–4137.

    Article  Google Scholar 

  • McKeown, K., Daume III, H., Chaturvedi, S., Paparrizos, J., Thadani, K., Barrio, P., et al. (2016). Predicting the impact of scientific concepts using full‐text features. Journal of the Association for Information Science and Technology, 67(11), 2684–2696. https://doi.org/10.1002/asi.23612

  • Meireles, M. R. G., & Cendon, B. V. (2015). Citation-based document categorization: An approach using artificial neural networks. Qualitative and Quantitative Methods in Libraries, January, 71–79.

  • Mistele, T., Price, T., & Hossenfelder, S. (2019). Predicting authors’ citation counts and h-indices with a neural network. Scientometrics, 120(1), 87–104. https://doi.org/10.1007/s11192-019-03110-2

    Article  Google Scholar 

  • Nezhadbiglari, M., Goncalves, M. A., & Almeida, J. M. (2016). Early prediction of scholar popularity. In Proceedings of the ACM/IEEE joint conference on digital libraries, September 2016 (pp. 181–190). https://doi.org/10.1145/2910896.2910905

  • Nicolaisen, J., & Frandsen, T. F. (2012). Consensus formation in science modelled by aggregated bibliographic coupling. Journal of Informetrics, 6(2), 276–284.

    Article  Google Scholar 

  • Okagbue, H. I., Bishop, S. A., Oguntunde, P. E., Adamu, P. I., Opanuga, A. A., & Akhmetshin, E. M. (2019). Modified CiteScore metric for reducing the effect of self-citations. Telkomnika (Telecommunication Computing Electronics and Control), 17(6), 3044–3049. https://doi.org/10.12928/telkomnika.v17i6.12292

  • Ortega, J. L. (2021). How do media mention research papers? Structural analysis of blogs and news networks using citation coupling. Journal of Informetrics, 15(3), 101175. https://doi.org/10.1016/j.joi.2021.101175

    Article  Google Scholar 

  • Penner, O., Pan, R. K., Petersen, A. M., Kaski, K., & Fortunato, S. (2013). On the predictability of future impact in science. Scientific Reports, 3, 1–8. https://doi.org/10.1038/srep03052

    Article  Google Scholar 

  • Perneger, T. V. (2015). Online accesses to medical research articles on publication predicted citations up to 15 years later. Journal of Clinical Epidemiology, 68(12), 1440–1445. https://doi.org/10.1016/j.jclinepi.2015.01.024

    Article  Google Scholar 

  • Pobiedina, N., & Ichise, R. (2016). Citation count prediction as a link prediction problem. Applied Intelligence, 44(2), 252–268. https://doi.org/10.1007/s10489-015-0657-y

    Article  Google Scholar 

  • Prathap, G., Mini, S., & Nishy, P. (2016). Does high impact factor successfully predict future citations? An analysis using Peirce’s measure. Scientometrics, 108(3), 1043–1047. https://doi.org/10.1007/s11192-016-2034-y

    Article  Google Scholar 

  • Priem, J., Taraborelli, D., & Groth, P. (2011). Altmetrics: A manifesto altmetrics: A manifesto. Cameron Neylon Science and Technology Facilities Council. https://digitalcommons.unl.edu/scholcom/185

  • Revesz, P. Z. (2014). A method for predicting citations to the scientific publications of individual researchers. In ACM international conference proceeding series, 2014 (pp. 9–18). https://doi.org/10.1145/2628194.2628210

  • Robson, B. J., & Mousquès, A. (2016). Can we predict citation counts of environmental modelling papers? Fourteen bibliographic and categorical variables predict less than 30% of the variability in citation counts. Environmental Modelling and Software, 75, 94–104. https://doi.org/10.1016/j.envsoft.2015.10.007

    Article  Google Scholar 

  • Ruan, X., et al. (2020). Predicting the citation counts of individual papers via a BP neural network. Journal of Informetrics, 14(3), 101039.

    Article  Google Scholar 

  • Sadaf, F., Shahid, M. H., & Islam, M. A. (2021). Predicting most influential paper award using citation count. In 2021 International conference on digital futures and transformative technologies (ICoDT2), 2021 (pp. 1–7). IEEE.

  • Sathianathen, N. J., Lane 3rd, R., Condon, B., Murphy, D. G., Lawrentschuk, N., Weight, C. J., et al. (2020). Early online attention can predict citation counts for urological publications: The# UroSoMe_Score. European Urology Focus, 6(3), 458–462. https://doi.org/10.1016/j.euf.2019.10.015

  • Shaikh, A. R., & Alhoori, H. (2019). Predicting patent citations to measure economic impact of scholarly research. In 2019 ACM/IEEE joint conference on digital libraries (JCDL), 2019 (pp. 400–401). IEEE.

  • Shi, G. Y., Kong, Y. X., Yuan, G. H., Wu, R. J., Zeng, A., & Medo, M. (2019). Discoverers in scientific citation data. Journal of Informetrics, 13(2), 717–725. https://doi.org/10.1016/j.joi.2019.03.017

    Article  Google Scholar 

  • Sohrabi, B., & Iraj, H. (2017). The effect of keyword repetition in abstract and keyword frequency per journal in predicting citation counts. Scientometrics, 110, 243–251.

    Article  Google Scholar 

  • Singh, M., Jaiswal, A., Shree, P., Pal, A., Mukherjee, A., & Goyal, P. (2017). Understanding the impact of early citers on long-term scientific impact. In 2017 ACM/IEEE joint conference on digital libraries (JCDL), 2017 (pp. 1–10). IEEE.

  • Singh, M., Jaiswal, A., Shree, P., Pal, A., Mukherjee, A., & Goyal, P. (2017, June). Understanding the impact of early citers on long-term scientific impact. In 2017 ACM/IEEE joint conference on digital libraries (JCDL), 2017 (pp. 1–10). IEEE.

  • Singh, M., Patidar, V., Kumar, S., Chakraborty, T., Mukherjee, A., & Goyal, P. (2015, October). The role of citation context in predicting long-term citation profiles: An experimental study based on a massive bibliographic text dataset. In Proceedings of the 24th ACM international on conference on information and knowledge management, 2015 (pp. 1271–1280).

  • Small, H. (2018). Characterizing highly cited method and non-method papers using citation contexts: The role of uncertainty. Journal of Informetrics, 12(2), 461–480. https://doi.org/10.1016/j.joi.2018.03.007

    Article  Google Scholar 

  • Sood, S. K., Kumar, N., & Saini, M. (2021). Scientometric analysis of literature on distributed vehicular networks: VOSViewer visualization techniques. Artificial Intelligence Review, 54, 1–33.

    Article  Google Scholar 

  • Stegehuis, C., Litvak, N., & Waltman, L. (2015). Predicting the long-term citation impact of recent publications. Journal of Informetrics, 9(3), 642–657. https://doi.org/10.1016/j.joi.2015.06.005

    Article  Google Scholar 

  • Tang, X., Zhou, H., & Li, S. (2023). Predictable by publication: Discovery of early highly cited academic papers based on their own features. Library Hi Tech.

  • Templ, M. (2020). Modeling and prediction of the impact factor of journals using open-access databases: With an application to the Austrian journal of statistics. Austrian Journal of Statistics, 49(5), 35–58. https://doi.org/10.17713/ajs.v49i5.1186

  • Thelwall, M. (2018). Early Mendeley readers correlate with later citation counts. Scientometrics, 115(3), 1231–1240.

    Article  Google Scholar 

  • Thelwall, M. (2022). Can the quality of published academic journal articles be assessed with machine learning? Quantitative Science Studies, 3(1), 208–226.

    Article  Google Scholar 

  • Valderrama, P., Escabias, M., Jiménez-Contreras, E., Rodríguez-Archilla, A., & Valderrama, M. J. (2018). Proposal of a stochastic model to determine the bibliometric variables influencing the quality of a journal: Application to the field of Dentistry. Scientometrics, 115, 1087–1095. https://doi.org/10.1007/s11192-018-2707-9

  • Wang, K., Shi, W., Bai, J., Zhao, X., & Zhang, L. (2021). Prediction and application of article potential citations based on nonlinear citation-forecasting combined model. Scientometrics, 126, 6533–6550.

    Article  Google Scholar 

  • Wang, M., Yu, G., Xu, J., He, H., Yu, D., & An, S. (2012). Development a case-based classifier for predicting highly cited papers. Journal of Informetrics, 6(4), 586–599. https://doi.org/10.1016/j.joi.2012.06.002

    Article  Google Scholar 

  • Wang, M., Yu, G., & Yu, D. (2011). Mining typical features for highly cited papers. Scientometrics, 87(3), 695–706. https://doi.org/10.1007/s11192-011-0366-1

    Article  Google Scholar 

  • Weihs, L., & Etzioni, O. (2017). Learning to predict citation-based impact measures. In Proceedings of the ACM/IEEE joint conference on digital libraries, 2017. https://doi.org/10.1109/JCDL.2017.7991559

  • Wu, Z., Lin, W., Liu, P., Chen, J., & Mao, L. (2019). Predicting long-term scientific impact based on multi-field feature extraction. IEEE Access, 7, 51759–51770. https://doi.org/10.1109/ACCESS.2019.2910239

    Article  Google Scholar 

  • Xu, J., Li, M., Jiang, J., Ge, B., & Cai, M. (2019). Early prediction of scientific impact based on multi-bibliographic features and convolutional neural network. IEEE Access, 7, 92248–92258. https://doi.org/10.1109/ACCESS.2019.2927011

    Article  Google Scholar 

  • Yan, R., Tang, J., Liu, X., Shan, D., & Li, X. (2011). Citation count prediction: Learning to estimate future citations for literature. In Proceedings of the 20th ACM international conference on information and knowledge management, 2011 (pp. 1247–1252).

  • Yu, T., & Yu, G. (2014). Features of scientific papers and the relationships with their citation impact. Malaysian Journal of Library and Information Science, 19(1), 37–50.

    Google Scholar 

  • Yu, X., Gu, Q., Zhou, M., & Han, J. (2012, April). Citation prediction in heterogeneous bibliographic networks. In Proceedings of the 2012 SIAM international conference on data mining, 2012 (pp. 1119–1130). Society for Industrial and Applied Mathematics.

  • Yu, T., Yu, G., Li, P. Y., & Wang, L. (2014). Citation impact prediction for scientific papers using stepwise regression analysis. Scientometrics, 101(2), 1233–1252. https://doi.org/10.1007/s11192-014-1279-6

    Article  Google Scholar 

  • Zafar, L., Masood, N., & Ayaz, S. (2023). Impact of field of study (FoS) on authors’ citation trend. Scientometrics, 128(4), 2557–2576.

    Article  Google Scholar 

  • Zhang, C., Liu, C., Yu, L., Zhang, Z. K., & Zhou, T. (2017). Identifying the academic rising stars via pairwise citation increment ranking. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), LNCS (Vol. 10366, pp. 475–483). https://doi.org/10.1007/978-3-319-63579-8_36

  • Zhang, F., Bai, X., & Lee, I. (2019). Author impact: Evaluations, predictions, and challenges. IEEE Access, 7, 38657–38669. https://doi.org/10.1109/ACCESS.2019.2905955

    Article  Google Scholar 

  • Zhang, J., Xu, B., Liu, J., Tolba, A., Al-Makhadmeh, Z., & Xia, F. (2018). PePSI: Personalized prediction of scholars’ impact in heterogeneous temporal academic networks. IEEE Access, 6, 55661–55672. https://doi.org/10.1109/ACCESS.2018.2863938

    Article  Google Scholar 

  • Zhou, W., Gu, J., & Jia, Y. (2018). h-Index-based link prediction methods in citation network. Scientometrics, 117(1), 381–390. https://doi.org/10.1007/s11192-018-2867-7

    Article  Google Scholar 

  • Zhu, X., Li, W., Tian, H., & Cai, S. (2018). Hybrid influence of degree and H-index in the link prediction of complex networks. EPL. https://doi.org/10.1209/0295-5075/122/68003

    Article  Google Scholar 

  • Zhu, X., Turney, P., Lemire, D., & Vellino, A. (2015). Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2), 408–427.

    Article  Google Scholar 

  • Zhu, X. P., & Ban, Z. (2018). Citation count prediction based on academic network features. In Proceedings—International conference on advanced information networking and applications, AINA, May 2018 (pp. 534–541). https://doi.org/10.1109/AINA.2018.00084

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyana Shuib.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiza, W.S.N., Shuib, L., Idris, N. et al. Features, techniques and evaluation in predicting articles’ citations: a review from years 2010–2023. Scientometrics 129, 1–29 (2024). https://doi.org/10.1007/s11192-023-04845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04845-9

Keywords

Navigation