Skip to main content
Log in

Interdisciplinarity affects the technological impact of scientific research

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

How science contributes to technological innovation can benefit from a deep understanding of intrinsic characteristics of the science base that underlie technologies, especially characteristics with significant implications for the scientific base itself. This paper investigates the correlation between interdisciplinarity of scientific research (variety, balance, disparity, and Rao-Stirling) and their technological impact. Using all Web of Science research articles published in 2002 and USPTO patents, we find that the likelihood of a paper being cited by patents increases with variety and Rao-Stirling, and decreases with balance and disparity. Regarding specific technological impact, the significance of interdisciplinarity is more prominent in the long term and exhibits variations among different disciplines. Specifically, the intensity of technical impact decreases at a decreasing rate with variety over time, increases at a decreasing rate with Rao-Stirling over time, and decreases with disparity in the long term. Balance is insignificant but it presents a positive correlation in medicine and a negative correlation in natural science in the long term. The scope of technological impact focuses on the number of claims and IPCs, increase with variety and disparity in the long term, and increase with balance in the short term, but such positive correlation only in natural science in the long term. Furthermore, scientific impact and technological impact are closely related in our study, but in order to have technological impacts, interdisciplinary papers need first to reach a certain threshold in scientific impact. Our findings suggest that what is considered excellent within interdisciplinary research can potentially lead to remarkable advancements in technological innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550–560.

    Article  Google Scholar 

  • Ahmadpoor, M., & Jones, B. F. (2017). The dual frontier: Patented inventions and prior scientific advance. Science, 357(6351), 583–587.

    Article  Google Scholar 

  • Arora, A., Belenzon, S., & Suh, J. (2022). Science and the market for technology. Management Science. https://doi.org/10.1287/mnsc.2021.4268

    Article  Google Scholar 

  • Branstetter, L. (2005). Exploring the link between academic science and industrial innovation. Annales D’economie Et De Statistique, 79, 119–142.

    Article  Google Scholar 

  • Bromham, L., Dinnage, R., & Hua, X. (2016). Interdisciplinary research has consistently lower funding success. Nature, 534(7609), 684–687.

    Article  Google Scholar 

  • Bush, V. (1945). The endless frontier. National Science Foundation–EUA.

    Google Scholar 

  • Cassiman, B., Veugelers, R., & Zuniga, P. (2008). In search of performance effects of (in) direct industry science links. Industrial and Corporate Change, 17(4), 611–646.

    Article  Google Scholar 

  • Cech, T. R., & Rubin, G. M. (2004). Nurturing interdisciplinary research. Nature Structural & Molecular Biology, 11(12), 1166–1169.

    Article  Google Scholar 

  • Chen, S., Qiu, J., Arsenault, C., & Larivière, V. (2021). Exploring the interdisciplinarity patterns of highly cited papers. Journal of Informetrics, 15(1), 101124.

    Article  Google Scholar 

  • Chen, S., Song, Y., Shu, F., & Larivière, V. (2022). Interdisciplinarity and impact: The effects of the citation time window. Scientometrics, 127(5), 2621–2642.

    Article  Google Scholar 

  • Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, 68, 101874.

    Article  Google Scholar 

  • D’este, P., Llopis, O., Rentocchini, F., & Yegros, A. (2019). The relationship between interdisciplinarity and distinct modes of university-industry interaction. Research Policy, 48(9), 103799.

    Article  Google Scholar 

  • Fleming, L., & Sorenson, O. (2004). Science as a map in technological search. Strategic Management Journal, 25(8–9), 909–928.

    Article  Google Scholar 

  • Fontana, M., Iori, M., Sciabolazza, V. L., & Souza, D. (2022). The interdisciplinarity dilemma: Public versus private interests. Research Policy, 51(7), 104553.

    Article  Google Scholar 

  • Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of citation patterns. Management Science, 49(4), 366–382.

    Article  Google Scholar 

  • Hicks, D., Breitzman, A., Sr., Hamilton, K., & Narin, F. (2000). Research excellence and patented innovation. Science and Public Policy, 27(5), 310–320.

    Article  Google Scholar 

  • Ke, Q. (2018). Comparing scientific and technological impact of biomedical research. Journal of Informetrics, 12(3), 706–717.

    Article  Google Scholar 

  • Ke, Q. (2020a). Interdisciplinary research and technological impact. arXiv preprint arXiv:2006.15383.

  • Ke, Q. (2020b). Technological impact of biomedical research: The role of basicness and novelty. Research Policy, 49(7), 104071.

    Article  Google Scholar 

  • Ke, Q. (2023). Interdisciplinary research and technological impact: Evidence from biomedicine. Scientometrics, 128(4), 2035–2077.

    Article  Google Scholar 

  • Kevles, D. J. (1977). The National Science Foundation and the debate over postwar research policy, 1942–1945: A political interpretation of science-the endless frontier. Isis, 68(1), 5–26.

    Article  Google Scholar 

  • Kwon, S. (2022). Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation. Technological Forecasting and Social Change, 181, 121767.

    Article  Google Scholar 

  • Kwon, S., Youtie, J., & Porter, A. L. (2021). Interdisciplinary knowledge combinations and emerging technological topics: Implications for reducing uncertainties in research evaluation. Research Evaluation, 30(1), 127–140.

    Article  Google Scholar 

  • Larivière, V., & Gingras, Y. (2010). On the relationship between interdisciplinarity and scientific impact. Journal of the American Society for Information Science and Technology, 61(1), 126–131.

    Article  Google Scholar 

  • Larivière, V., Haustein, S., & Börner, K. (2015). Long-distance interdisciplinarity leads to higher scientific impact. PLoS ONE, 10(3), e0122565.

    Article  Google Scholar 

  • Leten, B., Kelchtermans, S., & Belderbos, R. (2022). How does basic research improve innovation performance in the world’s major pharmaceutical firms? Industry and Innovation, 29(3), 396–424.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.

    Article  Google Scholar 

  • Leydesdorff, L., Wagner, C. S., & Bornmann, L. (2019). Diversity measurement: Steps towards the measurement of interdisciplinarity? Journal of Informetrics, 13(3), 904–905.

    Article  Google Scholar 

  • Malva, A. D., Kelchtermans, S., Leten, B., & Veugelers, R. (2015). Basic science as a prescription for breakthrough inventions in the pharmaceutical industry. The Journal of Technology Transfer, 40, 670–695.

    Article  Google Scholar 

  • Mansfield, E. (1991). Academic research and industrial innovation. Research Policy, 20(1), 1–12.

    Article  MathSciNet  Google Scholar 

  • Marx, M., & Fuegi, A. (2020). Reliance on science: Worldwide front-page patent citations to scientific articles. Strategic Management Journal, 41(9), 1572–1594.

    Article  Google Scholar 

  • McMillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8.

    Article  Google Scholar 

  • Meyer, M. (2000). Does science push technology? Patents citing scientific literature. Research Policy, 29(3), 409–434.

    Article  Google Scholar 

  • Meyer, M. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51(1), 163–183.

    Article  Google Scholar 

  • Min, C., & Ke, Q. (2021). Temporal search in the scientific space predicts breakthrough inventions. arXiv preprint arXiv:2107.09176.

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • National Academy of Sciences. (2005). Facilitating interdisciplinary research. Washington, DC: National Academies Press.

  • Nelson, R. (1962). The link between science and invention: The case of the transistor. The rate and direction of inventive activity: Economic and social factors (pp. 549–584). Princeton University Press.

    Chapter  Google Scholar 

  • Nijssen, D., Rousseau, R., & Van Hecke, P. (1998). The Lorenz curve: A graphical representation of evenness. Coenoses, 13, 33–38.

    Google Scholar 

  • Persoon, P. G., Bekkers, R. N., & Alkemade, F. (2020). The science base of renewables. Technological Forecasting and Social Change, 158, 120121.

    Article  Google Scholar 

  • Pezzoni, M., Veugelers, R., & Visentin, F. (2022). How fast is this novel technology going to be a hit? Antecedents Predicting Follow-on Inventions. Research Policy, 51(3), 104454.

    Google Scholar 

  • Poege, F., Harhoff, D., Gaessler, F., & Baruffaldi, S. (2019). Science quality and the value of inventions. Science Advances, 5(12), eaay7323.

    Article  Google Scholar 

  • Popp, D. (2017). From science to technology: The value of knowledge from different energy research institutions. Research Policy, 46(9), 1580–1594.

    Article  Google Scholar 

  • Rylance, R. (2015). Grant giving: Global funders to focus on interdisciplinarity. Nature, 525(7569), 313–315.

    Article  Google Scholar 

  • Shin, S. R., Lee, J., Jung, Y. R., & Hwang, J. (2022). The diffusion of scientific discoveries in government laboratories: The role of patents filed by government scientists. Research Policy, 51(5), 104496.

    Article  Google Scholar 

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.

    Article  Google Scholar 

  • Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.

    Article  Google Scholar 

  • Van Raan, A. F. (2017). Sleeping beauties cited in patents: Is there also a dormitory of inventions? Scientometrics, 110(3), 1123–1156.

    Article  Google Scholar 

  • van Raan, A. F., & Winnink, J. J. (2018). Do younger sleeping beauties prefer a technological prince? Scientometrics, 114(2), 701–717.

    Article  Google Scholar 

  • Veugelers, R., & Wang, J. (2019). Scientific novelty and technological impact. Research Policy, 48(6), 1362–1372.

    Article  Google Scholar 

  • Wang, J., & Verberne, S. (2021). Two tales of science technology linkage: Patent in-text versus front-page references. arXiv preprint arXiv:2103.08931.

  • Wang, J., Thijs, B., & Glänzel, W. (2015). Interdisciplinarity and impact: Distinct effects of variety, balance, and disparity. PLoS ONE, 10(5), e0127298.

    Article  Google Scholar 

  • Wang, J., Veugelers, R., & Stephan, P. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), 1416–1436.

    Article  Google Scholar 

  • Wang, L., & Li, Z. (2021). Knowledge flows from public science to industrial technologies. The Journal of Technology Transfer, 46(4), 1232–1255.

    Article  MathSciNet  Google Scholar 

  • Yegros-Yegros, A., Rafols, I., & D’este, P. (2015). Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. PLoS ONE, 10(8), e0135095.

    Article  Google Scholar 

  • Zhang, L., Sun, B., Jiang, L., & Huang, Y. (2021). On the relationship between interdisciplinarity and impact: Distinct effects on academic and broader impact. Research Evaluation, 30(3), 256–268.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Kyle Siler at Université de Montréal for helpful feedback, and Observatoire des sciences et des technologies for providing the data. This article has been funded by the Scholarship Fund from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Larivière.

Ethics declarations

Conflict of interest

Vincent Larivière is a member of the of Distinguished Reviewers Board of Scientometrics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, S. & Larivière, V. Interdisciplinarity affects the technological impact of scientific research. Scientometrics 128, 6527–6559 (2023). https://doi.org/10.1007/s11192-023-04846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04846-8

Keywords

Navigation