Skip to main content
Log in

Bayesian model learning based on a parallel MCMC strategy

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We introduce a novel Markov chain Monte Carlo algorithm for estimation of posterior probabilities over discrete model spaces. Our learning approach is applicable to families of models for which the marginal likelihood can be analytically calculated, either exactly or approximately, given any fixed structure. It is argued that for certain model neighborhood structures, the ordinary reversible Metropolis-Hastings algorithm does not yield an appropriate solution to the estimation problem. Therefore, we develop an alternative, non-reversible algorithm which can avoid the scaling effect of the neighborhood. To efficiently explore a model space, a finite number of interacting parallel stochastic processes is utilized. Our interaction scheme enables exploration of several local neighborhoods of a model space simultaneously, while it prevents the absorption of any particular process to a relatively inferior state. We illustrate the advantages of our method by an application to a classification model. In particular, we use an extensive bacterial database and compare our results with results obtained by different methods for the same data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altekar G., Dwarkadas S., Huelsenbeck J.P., and Ronquist F. 2004. Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20: 407–415.

    Article  Google Scholar 

  • Brooks S.P., Giudici P., and Roberts G.O. 2003. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. J. Roy. Statist. Soc. B 65: 3–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlin B.P. and Chib S. 1995. Bayesian model choice via Markov-chain Monte Carlo methods. J. Roy. Statist. Soc. B 57: 473–484.

    MATH  Google Scholar 

  • Chib S. and Greenberg E. 1995. Understanding the Metropolis-Hastings algorithm. Amer. Statist. 49: 327–335.

    Article  Google Scholar 

  • Corander J., Gyllenberg M., and Koski T. 2006. Bayesian unsupervised classification framework based on stochastic partitions of data and a parallel search strategy. Submitted to J. Statist. Comput. Simulation.

  • Corander J., Waldmann P., Marttinen P., and Sillanpää M.J. 2004. BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363–2369.

    Article  Google Scholar 

  • Diaconis P., Holmes S., and Neal R.M. 2000. Analysis of a nonreversible Markov chain sampler. Ann. App. Prob. 10: 726–752.

    Article  MATH  MathSciNet  Google Scholar 

  • Doucet A., Godsill S., and Andrieu C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10: 197–208.

    Article  Google Scholar 

  • Farmer J.J., Davis B.R., and Hickmanbrenner F.W. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiology 21: 46–76.

    Google Scholar 

  • Geyer C.J. and Thompson E.A. 1995. Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Stat. Assoc. 90: 909–920.

    Article  MATH  Google Scholar 

  • Gidas B. 1985. Nonstationary Markov chains and convergence of the annealing algorithm. J. Statist. Phys. 39: 73–130.

    Article  MATH  MathSciNet  Google Scholar 

  • Giudici P. and Castelo R. 2003. Improving Markov chain Monte Carlo search for data mining. Machine Learning 50: 127–158.

    Article  MATH  Google Scholar 

  • Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika82: 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg H.G., Gyllenberg M., Koski T., Lund T., Schindler J., and Verlaan, M. 1997. Classification of Enterobacteriaceae by minimization of stochastic complexity. Microbiology 143: 721–732.

    Article  Google Scholar 

  • Gyllenberg H.G., Gyllenberg M., Koski T., and Lund T. 1998. Stochastic complexity as a taxonomic tool. Computer Methods and Programs in Biomedicine 56: 11–22.

    Article  Google Scholar 

  • Gyllenberg H.G., Gyllenberg M., Koski T., Lund T., and Schindler J. 1999a. An assessment of cumulative classification. Quantitative Microbiology 1: 7–27.

    Article  Google Scholar 

  • Gyllenberg H.G., Gyllenberg M., Koski T., Lund T., and Schindler J. 1999b. Enterobacteriaceae taxonomy approached by minimization of stochastic complexity. Quantitative Microbiology 1: 157–170.

    Article  Google Scholar 

  • Gyllenberg H.G., Gyllenberg M., Koski T., Lund T., Mannila H., and Meek C. 1999c. Singling out ill-fit items in a classification. Application to the taxonomy of Enterobacteriaceae. Archives of Control Sciences 9: 97–105.

    MathSciNet  MATH  Google Scholar 

  • Gyllenberg M., Koski T., Lund T., and Gyllenberg H.G. 1999. Bayesian predictive identification and cumulative classification of bacteria. Bulletin of Mathematical Biology 61: 85–111.

    Article  Google Scholar 

  • Häggström O. 2002. Finite Markov Chains and Algorithmic Applications. Cambridge, Cambridge University Press.

    MATH  Google Scholar 

  • Isaacson D.L. and Madsen R.W. 1976. Markov Chains: Theory and Applications, New York, Wiley.

  • Jensen S.T., Liu S., Zhou Q., and Liu J.S. 2004. Computational discovery of gene regulatory binding motifs: A Bayesian perspective. Stat. Sci. 19: 188–204.

    Article  MATH  MathSciNet  Google Scholar 

  • Laskey K.B. and Myers J.W. 2003. Population Markov chain Monte Carlo. Machine Learning 50: 175–196.

    Article  MATH  Google Scholar 

  • Robert C.P. and Casella G. 2005. Monte Carlo Statistical Methods. 2nd edition, New York, Springer.

    MATH  Google Scholar 

  • Schervish M.J. 1995. Theory of Statistics. New York, Springer.

    MATH  Google Scholar 

  • Sisson S.A. 2005. Transdimensional Markov chains: A decade of progress and future perspectives. J. Amer. Stat. Assoc. 100: 1077–1089.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L.M. 1994. Markov chains for exploring posterior distributions. Ann. Statist. 22: 1701–1728.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Corander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corander, J., Gyllenberg, M. & Koski, T. Bayesian model learning based on a parallel MCMC strategy. Stat Comput 16, 355–362 (2006). https://doi.org/10.1007/s11222-006-9391-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-006-9391-y

Keywords

Navigation