Skip to main content

Evaluation of Tweedie exponential dispersion model densities by Fourier inversion

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The Tweedie family of distributions is a family of exponential dispersion models with power variance functions V(μ)=μ p for \(p\not\in(0,1)\) . These distributions do not generally have density functions that can be written in closed form. However, they have simple moment generating functions, so the densities can be evaluated numerically by Fourier inversion of the characteristic functions. This paper develops numerical methods to make this inversion fast and accurate. Acceleration techniques are used to handle oscillating integrands. A range of analytic results are used to ensure convergent computations and to reduce the complexity of the parameter space. The Fourier inversion method is compared to a series evaluation method and the two methods are found to be complementary in that they perform well in different regions of the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abramowitz, M., Stegun, I.A. (eds.): A Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  • Candy, S.G.: Modelling catch and effort data using generalized linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects. CCAMLR Sci. 11, 59–80 (2004)

    MathSciNet  Google Scholar 

  • Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)

    MATH  Google Scholar 

  • Dunn, P.K.: Likelihood-based inference for Tweedie exponential dispersion models. Unpublished Ph.D. Thesis, University of Queensland (2001)

  • Dunn, P.K.: Occurrence and quantity of precipitation can be modelled simultaneously. Int. J. Clim. 24, 1231–1239 (2004)

    Article  Google Scholar 

  • Dunn, P.K., Smyth, G.K.: Series evaluation of Tweedie exponential dispersion models densities. Stat. Comput. 15, 267–280 (2005)

    Article  MathSciNet  Google Scholar 

  • Evans, G.: Practical Numerical Integration. Wiley, New York (1993)

    MATH  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  • Gilchrist, R.: Regression models for data with a non-zero probability of a zero response. Commun. Stat. Theory Methods 29, 1987–2003 (2000)

    Article  MATH  Google Scholar 

  • Johnson, N.L., Kotz, S.: Continuous Univariate Distributions—I. Houghton Mifflin, Boston (1970)

    Google Scholar 

  • Jørgensen, B.: Exponential dispersion models (with discussion). J. R. Stat. Soc. B 49, 127–162 (1987)

    MATH  Google Scholar 

  • Jørgensen, B.: The Theory of Dispersion Models. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • Jørgensen, B., Paes de Souza, M.C.: Fitting Tweedie’s compound Poisson model to insurance claims data. Scand. Actuar. J. 1, 69–93 (1994)

    Google Scholar 

  • Krommer, A.R., Überhuber, C.W.: Computational Integration. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    MATH  Google Scholar 

  • Lambert, P., Lindsey, J.K.: Analysing financial returns using regression models based on non-symmetric stable distributions. J. R. Stat. Soc. C 48, 409–424 (1999)

    Article  MATH  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, London (1989)

    MATH  Google Scholar 

  • Nolan, J.P.: An algorithm for evaluating stable densities in Zolotarev’s (M) parameterization. Math. Comput. Model. 29, 229–233 (1997)

    Article  Google Scholar 

  • Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K.: Quadpack: A Subroutine Package for Automatic Integration. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • R Development Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2005). http://www.R-project.org

    Google Scholar 

  • Rabinowitz, P.: Extrapolation methods in numerical integration. Numer. Algorithms 3, 17–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Seigel, A.F.: The noncentral chi-squared distribution with zero degrees of freedom and testing for uniformity. Biometrika 66, 381–386 (1979)

    Article  MathSciNet  Google Scholar 

  • Seigel, A.F.: Modelling data containing exact zeros using zero degrees of freedom. J. R. Stat. Soc. B 47, 267–271 (1985)

    Google Scholar 

  • Sidi, A.: Extrapolation methods for oscillatory infinite integrals. IMA J. Appl. Math. 26, 1–20 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Sidi, A.: An algorithm for a special case of a generalization of the Richardson extrapolation process. Numer. Math. 38, 299–307 (1982a)

    Article  MATH  MathSciNet  Google Scholar 

  • Sidi, A.: The numerical evaluation of very oscillatory infinite integrals by extrapolation. Math. Comput. 538, 517–529 (1982b)

    MathSciNet  Google Scholar 

  • Sidi, A.: A user-friendly extrapolation method for oscillatory infinite integrals. Math. Comput. 51, 249–266 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Sidi, A.: Computation of infinite integrals involving Bessel functions or arbitrary order by the \(\bar{D}\) -transformation. J. Comput. Appl. Math. 78, 125–130 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Dunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, P.K., Smyth, G.K. Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Stat Comput 18, 73–86 (2008). https://doi.org/10.1007/s11222-007-9039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-007-9039-6

Keywords