Skip to main content
Log in

A sign based loss approach to model selection in nonparametric regression

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In parametric regression models the sign of a coefficient often plays an important role in its interpretation. One possible approach to model selection in these situations is to consider a loss function that formulates prediction of the sign of a coefficient as a decision problem. Taking a Bayesian approach, we extend this idea of a sign based loss for selection to more complex situations. In generalized additive models we consider prediction of the sign of the derivative of an additive term at a set of predictors. Being able to predict the sign of the derivative at some point (that is, whether a term is increasing or decreasing) is one approach to selection of terms in additive modelling when interpretation is the main goal. For models with interactions, prediction of the sign of a higher order derivative can be used similarly. There are many advantages to our sign-based strategy for selection: one can work in a full or encompassing model without the need to specify priors on a model space and without needing to specify priors on parameters in submodels. Also, avoiding a search over a large model space can simplify computation. We consider shrinkage prior specifications on smoothing parameters that allow for good predictive performance in models with large numbers of terms without the need for selection, and a frequentist calibration of the parameter in our sign-based loss function when it is desired to control a false selection rate for interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, F., Steinberg, D.: Improved inference in nonparametric regression using L k -smoothing splines. J. Stat. Plan. Inference 49, 327–341 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Biller, C.: Adaptive Bayesian regression splines in semiparametric generalized linear models. J. Comput. Graph. Stat. 12, 122–140 (2000)

    MathSciNet  Google Scholar 

  • Chan, D., Kohn, R., Nott, D., Kirby, C.: Locally adaptive semiparametric estimation of the mean and variance functions in regression models. J. Comput. Graph. Stat. 15, 915–936 (2006)

    Article  MathSciNet  Google Scholar 

  • Chaudhuri, P., Marron, S.: SiZer for exploration of structure in curves. J. Am. Stat. Assoc. 94, 807–823 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Cottet, R., Kohn, R., Nott, D.: Variable selection and model averaging in semiparametric overdispersed generalized linear models. J. Am. Stat. Assoc. 103, 661–671 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • De Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    MATH  Google Scholar 

  • Denison, D.G.T., Mallick, B.K., Smith, A.F.M.: Automatic Bayesian curve fitting. J. R. Stat. Soc. B 60, 333–350 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Dias, R., Gamerman, D.: A Bayesian approach to hybrid splines non-parametric regression. J. Stat. Comput. Simul. 72, 285–297 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • DiMatteo, I., Genovese, C.R., Kass, R.E.: Bayesian curve-fitting with free-knot splines. Biometrika 88, 1055–1071 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing using B-splines and penalties (with discussion). Stat. Sci. 11, 89–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Gamerman, D.: Sampling from the posterior distribution in generalized linear mixed models. Stat. Comput. 7, 57–68 (1997)

    Article  Google Scholar 

  • Ganguli, B., Wand, M.P.: Feature significance in generalized additive models. Stat. Comput. 17, 179–192 (2007)

    Article  MathSciNet  Google Scholar 

  • Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006)

    Article  MathSciNet  Google Scholar 

  • Gelman, A., Tuerlinckx, F.: Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput. Stat. 15, 373–390 (2000)

    Article  MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  • Gilley, O.W., Pace, R.K.: On the Harrison and Rubinfeld data. J. Environ. Econ. Manage. 31, 403–405 (1996)

    Article  MATH  Google Scholar 

  • Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • González-Manteiga, W., Martínez-Miranda, M.D., Raya-Miranda, R.: SiZer map for inference with additive models. Stat. Comput. 18, 297–312 (2008)

    Article  MathSciNet  Google Scholar 

  • Gu, C., Wahba, G.: Smoothing spline ANOVA with component-wise Bayesian “confidence intervals”. J. Comput. Graph. Stat. 2, 97–117 (1993)

    Article  MathSciNet  Google Scholar 

  • Gustafson, P.: Bayesian regression modeling with interactions and smooth effects. J. Am. Stat. Assoc. 95, 795–806 (2000)

    Article  Google Scholar 

  • Harrison, D., Rubinfeld, D.L.: Hedonic prices and the demand for clean air. J. Environ. Econ. Manage. 5, 81–102 (1978)

    Article  MATH  Google Scholar 

  • Hastie, T.: Pseudosplines. J. R. Stat. Soc. B 58, 379–396 (1996)

    MATH  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R.: Bayesian backfitting (with discussion). Stat. Sci. 15, 196–223 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Jara, A., Hanson, T., Quintana, F., Mueller, P., Rosner, G.: The DPpackage package. Reference manual. Available at http://cran.r-project.org/web/packages/DPpackage/DPpackage.pdf (2008)

  • Jones, L.V., Tukey, J.W.: A sensible formulation of the significance test. Psychol. Methods 5, 411–414 (2000)

    Article  Google Scholar 

  • Kass, R.E., Wasserman, L.: A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Stat. Assoc. 90, 928–934 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Kohn, R., Smith, M., Chan, D.: Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11, 313–322 (2001)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13, 183–212 (2004)

    Article  MathSciNet  Google Scholar 

  • Lenk, P.J., DeSarbo, W.S.: Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 65, 93–119 (2000)

    Article  Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Lunn, D.J., Best, N., Whittaker, J.C.: Generic reversible jump MCMC using graphical models. Stat. Comput. (2008, in press)

  • Nott, D.: Semiparametric estimation of mean and variance functions for non-Gaussian data. Comput. Stat. 21, 603–620 (2006)

    Article  MATH  Google Scholar 

  • Nott, D.J., Kuk, A.Y.C.: Coefficient sign prediction methods for model selection. J. R. Stat. Soc. B 69, 447–461 (2007)

    Article  MathSciNet  Google Scholar 

  • Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. Appl. Stat. 54, 507–554 (2005)

    MATH  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Shively, T.S., Kohn, R., Wood, S.: Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion). J. Am. Stat. Assoc. 94, 777–806 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317–344 (1996)

    Article  MATH  Google Scholar 

  • Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Symposium on Computer Applications and Medical Care, pp. 261–265. IEEE Comput. Soc., Los Alamitos (1988)

    Google Scholar 

  • Spiegelhalter, D.J., Thomas, A., Best, N.: WinBUGSVersion 1.2 User Manual. MRC Biostatistics Unit. Software available at http://www.mrcbsu.cam.ac.uk/bugs/winbugs/contents.shtml (1999)

  • Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press, London/Boca Raton (2006)

    MATH  Google Scholar 

  • Wood, S., Kohn, R.: A Bayesian approach to robust binary nonparametric regression. J. Am. Stat. Assoc. 93, 203–213 (1998)

    Article  MATH  Google Scholar 

  • Wood, S., Kohn, R., Shively, T., Jiang, W.: Model selection in spline nonparametric regression. J. R. Stat. Soc. B 64, 119–139 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, Y., Boos, D., Stefanski, L.A.: Controlling variable selection by the addition of pseudo-variables. J. Am. Stat. Assoc. 102, 235–243 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Yau, P., Kohn, R.: Estimation and variable selection in nonparametric heteroscedastic regression. Stat. Comput. 13, 191–208 (2003)

    Article  MathSciNet  Google Scholar 

  • Yau, P., Kohn, R., Wood, S.: Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. J. Comput. Graph. Stat. 12, 23–54 (2003)

    Article  MathSciNet  Google Scholar 

  • Zaslavsky, A.M.: From ANOVA to variance components. Discussion of Gelman (2005) Analysis of variance—why it is more important than ever. Ann. Stat. 33, 1–53 (2005)

    Article  Google Scholar 

  • Zheng, X., Loh, W.: Consistent variable selection in linear models. J. Am. Stat. Assoc. 90, 151–156 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Nott.

Additional information

This research was supported by an Australian Research Council grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nott, D.J., Jialiang, L. A sign based loss approach to model selection in nonparametric regression. Stat Comput 20, 485–498 (2010). https://doi.org/10.1007/s11222-009-9139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-009-9139-6

Keywords

Navigation