Abstract
In this paper, A variance decomposition approach to quantify the effects of endogenous and exogenous variables for nonlinear time series models is developed. This decomposition is taken temporally with respect to the source of variation. The methodology uses Monte Carlo methods to affect the variance decomposition using the ANOVA-like procedures proposed in Archer et al. (J. Stat. Comput. Simul. 58:99–120, 1997), Sobol’ (Math. Model. 2:112–118, 1990). The results of this paper can be used in investment problems, biomathematics and control theory, where nonlinear time series with multiple inputs are encountered.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Archer, G.E.B., Saltelli, A., Sobol, I.M.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58, 99–120 (1997)
Bailey, B.A., Doney, S.C., Lima, I.D.: Quantifying the effects of dynamical noise on the predictability of a simple ecosystem model. Environmetrics 15, 337–355 (2004)
Brown, B.W., Mariano, R.S.: Predictors in dynamic nonlinear models: Large-sample behavior. Econom. Theory 5(3), 430–452 (1989). http://www.jstor.org/stable/3532377
Chan, K., Saltelli, A., Tarantola, S.: Winding stairs: a sampling tool to compute sensitivity indices. Stat. Comput. 10, 187–196 (2000)
Cox, D.: An analytic method for uncertainty analysis of nonlinear output functions, with applications to fault-tree analysis. IEEE Trans. Reliab. 31, 465–468 (1982)
Cukier, R., Fortuin, C., Shuler, K., Petschek, A., Schaibly, J.: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J. Chem. Phys. 59, 3873–3878 (1973)
Cukier, R., Levine, H., Shuler, K.: Nonlinear sensitivity analysis of multi-parameter model systems. J. Phys. Chem. 81, 2365–2366 (1977)
Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (2007)
Desborough, L.D., Harris, T.J.: Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 71, 605–616 (1993)
Dewald, L., Lewis, P.: A new Laplace second-order autoregressive time-series model—nlar(2). IEEE Trans. Inf. Theory 31, 645–651 (1985)
Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York (2005)
Ghaoui, L.E.: State-feedback control of system with multiplicative noise via linear matrix inequalities. Syst. Control Lett., 24, 223–228 (1995)
Granger, C., Teräsvirta, T.: Modelling Nonlinear Economic Relationships. Oxford University Press, Oxford (1993)
Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analysis of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)
Helton, J., Johnson, J., Sallaberry, C., Storlie, C.: Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)
Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice Hall, Upper Saddle River (1997)
Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)
Jacques, J., Lavergne, C., Devictor, N.: Sensitivity analysis in the presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Saf. 91, 1126–1134 (2006)
Jansen, K., Rossing, W., Daamen, R.A.: Monte Carlo estimation of uncertainty contributions from several independent multivariate sources. In: Predictability and Nonlinear Modelling in Natural Sciences and Economics. Kluwer Academic, Norwell (1994)
Jimenes, J.C., Ozaki, T.: Linear estimation of continuous-discrete linear state space models with multiplicative noise. Syst. Control. Lett. 47, 91–101 (2002)
Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Probability and Statistics. Wiley, Chichester (2006)
Lawrance, A., Lewis, P.: Modeling and residual analysis of nonlinear autoregressive time series in exponential variables. J. R. Stat. Soc. B 47, 165–202 (1985)
Leontaritis, I.J., Billings, S.: Input-output parametric models for nonlinear systems. Part II. Stochastic nonlinear systems. Int. J. Control 41, 329–344 (1985)
Lilburne, L., Tarantola, S.: Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 23, 151–168 (2009)
Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1991)
McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000)
Panjer, H.: Decomposition of moments by conditional moments. Am. Stat. 27, 170–171 (1973)
Pearson, R.: Discrete-Time Dynamical Models. Oxford University Press, Oxford (1999)
Petersson, M., Årzén, K.E., Hägglund, T.: A comparison of two feedforward control structure assessment methods. Int. J. Adapt. Control Signal Process. 17, 609–624 (2003)
Sales, K.R., Billings, S.A.: Self-tuning control of non-linear ARMAX models. Int. J. Control 51(4), 753–769 (1990)
Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)
Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22, 579–590 (2002)
Satelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)
Saltelli, A., Chan, K., Scott, E. (eds.): Sensitivity Analysis. Wiley, New York (2000)
Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis practices: strategies for model-based inference. Reliab. Eng. Syst. Saf. 91, 1109–1125 (2006)
Saltelli, A., Tarantola, S.: On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal. J. Am. Stat. Assoc. 97, 702–709 (2002)
Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, New York (2004)
Saltelli, A., Tarantola, S., Chan, K.: A quantitative model-independent method of global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)
Seppala, C., Harris, T., Bacon, D.: Time series methods for dynamic analysis of multiple controlled variables. J. Process Control 12, 257–276 (2002)
Shah, S., Patwardhan, R., Huang, B.: Multivariate controller performance analysis: methods, applications and challenges. In: Chemical Process Control—CPC VI. AIChE Symposium Series, vol. 98, pp. 190–207 (2002)
Sobol, I.: Distribution of points in a cube and approximate evaluation of integrals. Zh. Vych. Mat. Mat. Fiz. 7, 784–802 (1967) (in Russian); U.S.S.R Comput. Maths. Math. Phys. 7: 86-112 (in English)
Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Mat. Model. 2, 112–118 (1990) (in Russian), translated in Math. Modell. Comput. Exp. 1, 307–414 (1993)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)
Stachurski, J.: Economic dynamical systems with multiplicative noise. J. Math. Econ. 39, 135–152 (2003)
Stanfelj, N., Marlin, T.E., MacGregor, J.F.: Monitoring and diagnosing process control performance: The single-loop case. Ind. Eng. Chem. Res. 32, 301–314 (1993)
Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)
Stroud, A.: Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs (1971)
Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press, New York (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Harris, T.J., Yu, W. Variance decompositions of nonlinear time series using stochastic simulation and sensitivity analysis. Stat Comput 22, 387–396 (2012). https://doi.org/10.1007/s11222-011-9230-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-011-9230-7