Skip to main content
Log in

Variance decompositions of nonlinear time series using stochastic simulation and sensitivity analysis

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper, A variance decomposition approach to quantify the effects of endogenous and exogenous variables for nonlinear time series models is developed. This decomposition is taken temporally with respect to the source of variation. The methodology uses Monte Carlo methods to affect the variance decomposition using the ANOVA-like procedures proposed in Archer et al. (J. Stat. Comput. Simul. 58:99–120, 1997), Sobol’ (Math. Model. 2:112–118, 1990). The results of this paper can be used in investment problems, biomathematics and control theory, where nonlinear time series with multiple inputs are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Archer, G.E.B., Saltelli, A., Sobol, I.M.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58, 99–120 (1997)

    Article  MATH  Google Scholar 

  • Bailey, B.A., Doney, S.C., Lima, I.D.: Quantifying the effects of dynamical noise on the predictability of a simple ecosystem model. Environmetrics 15, 337–355 (2004)

    Article  Google Scholar 

  • Brown, B.W., Mariano, R.S.: Predictors in dynamic nonlinear models: Large-sample behavior. Econom. Theory 5(3), 430–452 (1989). http://www.jstor.org/stable/3532377

    Article  MathSciNet  Google Scholar 

  • Chan, K., Saltelli, A., Tarantola, S.: Winding stairs: a sampling tool to compute sensitivity indices. Stat. Comput. 10, 187–196 (2000)

    Article  Google Scholar 

  • Cox, D.: An analytic method for uncertainty analysis of nonlinear output functions, with applications to fault-tree analysis. IEEE Trans. Reliab. 31, 465–468 (1982)

    Article  MATH  Google Scholar 

  • Cukier, R., Fortuin, C., Shuler, K., Petschek, A., Schaibly, J.: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J. Chem. Phys. 59, 3873–3878 (1973)

    Article  Google Scholar 

  • Cukier, R., Levine, H., Shuler, K.: Nonlinear sensitivity analysis of multi-parameter model systems. J. Phys. Chem. 81, 2365–2366 (1977)

    Article  Google Scholar 

  • Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  • Desborough, L.D., Harris, T.J.: Performance assessment measures for univariate feedforward/feedback control. Can. J. Chem. Eng. 71, 605–616 (1993)

    Article  Google Scholar 

  • Dewald, L., Lewis, P.: A new Laplace second-order autoregressive time-series model—nlar(2). IEEE Trans. Inf. Theory 31, 645–651 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York (2005)

    Google Scholar 

  • Ghaoui, L.E.: State-feedback control of system with multiplicative noise via linear matrix inequalities. Syst. Control Lett., 24, 223–228 (1995)

    Article  MATH  Google Scholar 

  • Granger, C., Teräsvirta, T.: Modelling Nonlinear Economic Relationships. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  • Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  • Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analysis of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)

    Article  Google Scholar 

  • Helton, J., Johnson, J., Sallaberry, C., Storlie, C.: Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)

    Article  Google Scholar 

  • Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  • Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  • Jacques, J., Lavergne, C., Devictor, N.: Sensitivity analysis in the presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Saf. 91, 1126–1134 (2006)

    Article  Google Scholar 

  • Jansen, K., Rossing, W., Daamen, R.A.: Monte Carlo estimation of uncertainty contributions from several independent multivariate sources. In: Predictability and Nonlinear Modelling in Natural Sciences and Economics. Kluwer Academic, Norwell (1994)

    Google Scholar 

  • Jimenes, J.C., Ozaki, T.: Linear estimation of continuous-discrete linear state space models with multiplicative noise. Syst. Control. Lett. 47, 91–101 (2002)

    Article  Google Scholar 

  • Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Probability and Statistics. Wiley, Chichester (2006)

    Book  Google Scholar 

  • Lawrance, A., Lewis, P.: Modeling and residual analysis of nonlinear autoregressive time series in exponential variables. J. R. Stat. Soc. B 47, 165–202 (1985)

    MathSciNet  MATH  Google Scholar 

  • Leontaritis, I.J., Billings, S.: Input-output parametric models for nonlinear systems. Part II. Stochastic nonlinear systems. Int. J. Control 41, 329–344 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Lilburne, L., Tarantola, S.: Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 23, 151–168 (2009)

    Article  Google Scholar 

  • Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1991)

    MATH  Google Scholar 

  • McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000)

    Article  Google Scholar 

  • Panjer, H.: Decomposition of moments by conditional moments. Am. Stat. 27, 170–171 (1973)

    Article  Google Scholar 

  • Pearson, R.: Discrete-Time Dynamical Models. Oxford University Press, Oxford (1999)

    Google Scholar 

  • Petersson, M., Årzén, K.E., Hägglund, T.: A comparison of two feedforward control structure assessment methods. Int. J. Adapt. Control Signal Process. 17, 609–624 (2003)

    Article  MATH  Google Scholar 

  • Sales, K.R., Billings, S.A.: Self-tuning control of non-linear ARMAX models. Int. J. Control 51(4), 753–769 (1990)

    Article  MATH  Google Scholar 

  • Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)

    Article  MATH  Google Scholar 

  • Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22, 579–590 (2002)

    Article  Google Scholar 

  • Satelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)

    Article  Google Scholar 

  • Saltelli, A., Chan, K., Scott, E. (eds.): Sensitivity Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  • Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis practices: strategies for model-based inference. Reliab. Eng. Syst. Saf. 91, 1109–1125 (2006)

    Article  Google Scholar 

  • Saltelli, A., Tarantola, S.: On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal. J. Am. Stat. Assoc. 97, 702–709 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, New York (2004)

    MATH  Google Scholar 

  • Saltelli, A., Tarantola, S., Chan, K.: A quantitative model-independent method of global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)

    Article  Google Scholar 

  • Seppala, C., Harris, T., Bacon, D.: Time series methods for dynamic analysis of multiple controlled variables. J. Process Control 12, 257–276 (2002)

    Article  Google Scholar 

  • Shah, S., Patwardhan, R., Huang, B.: Multivariate controller performance analysis: methods, applications and challenges. In: Chemical Process Control—CPC VI. AIChE Symposium Series, vol. 98, pp. 190–207 (2002)

    Google Scholar 

  • Sobol, I.: Distribution of points in a cube and approximate evaluation of integrals. Zh. Vych. Mat. Mat. Fiz. 7, 784–802 (1967) (in Russian); U.S.S.R Comput. Maths. Math. Phys. 7: 86-112 (in English)

    MathSciNet  Google Scholar 

  • Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Mat. Model. 2, 112–118 (1990) (in Russian), translated in Math. Modell. Comput. Exp. 1, 307–414 (1993)

    MathSciNet  MATH  Google Scholar 

  • Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Stachurski, J.: Economic dynamical systems with multiplicative noise. J. Math. Econ. 39, 135–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Stanfelj, N., Marlin, T.E., MacGregor, J.F.: Monitoring and diagnosing process control performance: The single-loop case. Ind. Eng. Chem. Res. 32, 301–314 (1993)

    Article  Google Scholar 

  • Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Stroud, A.: Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  • Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, T.J., Yu, W. Variance decompositions of nonlinear time series using stochastic simulation and sensitivity analysis. Stat Comput 22, 387–396 (2012). https://doi.org/10.1007/s11222-011-9230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9230-7

Keywords