Abstract
Differential equations are used in modeling diverse system behaviors in a wide variety of sciences. Methods for estimating the differential equation parameters traditionally depend on the inclusion of initial system states and numerically solving the equations. This paper presents Smooth Functional Tempering, a new population Markov Chain Monte Carlo approach for posterior estimation of parameters. The proposed method borrows insights from parallel tempering and model based smoothing to define a sequence of approximations to the posterior. The tempered approximations depend on relaxations of the solution to the differential equation model, reducing the need for estimating the initial system states and obtaining a numerical differential equation solution. Rather than tempering via approximations to the posterior that are more heavily rooted in the prior, this new method tempers towards data features. Using our proposed approach, we observed faster convergence and robustness to both initial values and prior distributions that do not reflect the features of the data. Two variations of the method are proposed and their performance is examined through simulation studies and a real application to the chemical reaction dynamics of producing nylon.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Atchadé, Y., Liu, J.: The Wang-Landau algorithm in general state spaces: applications and convergence analysis. Stat. Sin. 20, 209–233 (2010)
Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J., Hubank, M.: Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7(3), R25 (2006)
Bates, D.M., Watts, D.B.: Nonlinear Regression Analysis and Its Applications. Wiley, New York (1988)
Bois, F.Y.: GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25(11), 1453–1454 (2009)
Brunel, N.J.B.: Parameter estimation of ODE’s via nonparametric estimators. Electron. J. Stat. 2, 1242–1267 (2008)
Calderhead, B., Girolami, M.: Estimating Bayes factors via thermodynamic integration and population MCMC. Comput. Stat. Data Anal. 53(12), 4028–4045 (2009)
Calderhead, B., Girolami, M., Lawrence, N.D.: Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 217–224 (2009)
Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, 57–83 (2009)
Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Springer, New York (2000)
Eilers, P.: A perfect smoother. Anal. Chem. 75, 3631–3636 (2003)
Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties (with discussion). Stat. Sci. 11, 89–102 (1996)
Esposito, W.R., Floudas, C.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000)
FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961)
Friel, N., Pettitt, A.N.: Marginal likelihood estimation via power posteriors. J. R. Stat. Soc., Ser. B, Stat. Methodol. 70(3), 589–607 (2008)
Gao, P., Honkela, A., Rattray, M., Lawrence, N.D.: Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. Bioinformatics 24, 70–75 (2008)
Gelman, A., Bois, F.Y., Jiang, J.: Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Am. Stat. Assoc. 91, 1400–1412 (1996)
Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics. Proceedings of the Fourth Valencia International Meeting, vol. 4, pp. 169–193. Clarendon Press, Oxford (1992)
Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163 (1991)
Geyer, C.J., Thompson, E.A.: Annealing Markov Chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assoc. 90, 909–920 (1995)
Gonzalez, O., Küper, C., Jung, K., Naval Jr. P., Mendoza, E.: Parameter estimation using simulated annealing for S-system models of biochemical networks. Bioinformatics 23, 480–486 (2007)
Gramacy, R., Samworth, R., King, R.: Importance tempering. Stat. Comput. 20, 1–7 (2010)
Gutenkunst, R.N., Casey, F.P., Waterfall, J.J., Myers, C.R., Sethna, J.P.: Extracting falsifiable predictions from sloppy models. Ann. N.Y. Acad. Sci. 1115, 203–211 (2007a)
Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871–1878 (2007b)
Huang, Y., Liu, D., Wu, H.: Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 62, 413–423 (2006)
Huang, Y., Wu, H.: A bayesian approach for estimating antiviral efficacy in HIV dynamic models. J. Appl. Stat. 33, 155–174 (2006)
Jasra, A., Stephens, D.A., Holmes, C.C.: On population-based simulation for static inference. Stat. Comput. 17, 263–279 (2007)
Kass, R.E., Raftery, A.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)
Klinke, D.J.: An empirical Bayesian approach for model-based inference of cellular signaling networks. BMC Bioinform. 10, 371 (2009)
Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., Hucka, M.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(Suppl 1), D689–D691 (2006)
Li, L., Brown, M.B., Lee, K.H., Gupta, S.: Estimation and inference for a spline-enhanced population pharmacokinetic model. Biometrics 58, 601–611 (2002)
Liang, F., Wong, W.: Evolutionary Monte Carlo sampling: applications to Cp model sampling and change-point problem. Stat. Sin. 10, 317–342 (2000)
Liang, F., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001)
Liang, H., Miao, H., Wu, H.: Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model. Ann. Appl. Stat. 4, 460–483 (2010)
Liang, H., Wu, H.: Parameter estimation for differential equation models using a framework of measurement error in regression models. J. Am. Stat. Assoc. 103, 1570–1583 (2008)
Liu, Jun S.: Monte Carlo strategies in Scientific Computing. Springer, New York (2001)
Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451–458 (1992)
Marlin, T.E.: Process Control. McGraw-Hill, New York (2000)
The MathWorks: Matlab ®7 Mathematics. The Mathworks, Inc. Natick, MA (2010)
Miao, H., Dykes, C., Demeter, L.M., Wu, H., Avenue, E., York, N., York, N.: Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multimodel inference. Biometrics 65, 292–300 (2009)
Nagumo, J.S., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating a nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)
Neal, R.M.: Sampling from multimodal distributions using tempered transitions. Stat. Comput. 4, 353–366 (1996)
Olhede, S.: Discussion on the paper by Ramsay, Hooker, Campbell and Cao. J. R. Stat. Soc. B 69, 772–779 (2008)
Poyton, A., Varziri, M., McAuley, K., McLellan, P., Ramsay, J.: Parameter estimation in continuous-time dynamic models using principal differential analysis. Comput. Chem. Eng. 30, 698–708 (2006)
Qi, X., Zhao, H.: Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations. Ann. Stat. 38(1), 435–481 (2010)
Raftery, A., Lewis, S.: How many iterations in the Gibbs sampler. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics. Proceedings of the Fourth Valencia International Meeting, vol. 4, pp. 763–773. Clarendon Press, Oxford (1992)
Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach (with discussion). J. R. Stat. Soc. B 69, 741–796 (2007)
Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)
Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., Timmer, J.: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 1923–1929 (2009)
Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83, 248–65 (2006)
Rogers, S., Khanin, R., Girolami, M.: Bayesian model-based inference of transcription factor activity. BMC Bioinform. 8, S2 (2007)
Salway, R., Wakefield, J.: Gamma generalized linear models for pharmacokinetic data. Biometrics 64, 620–626 (2008)
Varah, J.: A spline least squares method for numerical parameter estimation in differential equations. SIAM J. Sci. Stat. Comput. 3, 28–46 (1982)
Vilela, M., Borges, C.C.H., Vinga, S., Vasconcelos, A.T.R., Santos, H., Voit, E.O., Almeida, J.S.: Automated smoother for the numerical decoupling of dynamics models. BMC Bioinform. 8, 305 (2007)
Voit, E.O., Almeida, J.: Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 20, 1670–1681 (2004)
Voit, E.O., Sauvegeau, M.: Power-law approach to modeling biological systems; III. Methods of analysis. J. Ferment. Technol. 60, 233–241 (1982)
Walley, P., Moral, S.: Upper probabilities based only on the likelihood function. J. R. Stat. Soc. B 61, 831–847 (1999)
Wakefield, J.: The Bayesian analysis of population pharmacokinetic models. J. Am. Stat. Assoc. 91, 62–75 (1996)
Wakefield, J., Bennett, J.: The Bayesian modeling of covariates for population pharmacokinetic models. J. Am. Stat. Assoc. 91, 917–927 (1996)
Wu, H., Zhu, H., Miao, H., Perelson, A.S.: Parameter identifiability and estimation of HIV/AIDS dynamic models. Bull. Math. Biol. 70, 785–799 (2008)
Zheng, W., McAuley, K.B., Marchildon, E.K., Zhen Yao, K.: Effects of end-group balance on melt-phase nylon 612 polycondensation: experimental study and mathematical model. Ind. Eng. Chem. Res. 44, 2675–2686 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Campbell, D., Steele, R.J. Smooth functional tempering for nonlinear differential equation models. Stat Comput 22, 429–443 (2012). https://doi.org/10.1007/s11222-011-9234-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-011-9234-3