Skip to main content

Advertisement

Log in

Reverse engineering gene regulatory networks using approximate Bayesian computation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Gene regulatory networks are collections of genes that interact with one other and with other substances in the cell. By measuring gene expression over time using high-throughput technologies, it may be possible to reverse engineer, or infer, the structure of the gene network involved in a particular cellular process. These gene expression data typically have a high dimensionality and a limited number of biological replicates and time points. Due to these issues and the complexity of biological systems, the problem of reverse engineering networks from gene expression data demands a specialized suite of statistical tools and methodologies. We propose a non-standard adaptation of a simulation-based approach known as Approximate Bayesian Computing based on Markov chain Monte Carlo sampling. This approach is particularly well suited for the inference of gene regulatory networks from longitudinal data. The performance of this approach is investigated via simulations and using longitudinal expression data from a genetic repair system in Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alon, U.: Network motifs: theory and experimental approaches. Nat. Genet. Rev. 8, 450–461 (2007)

    Article  Google Scholar 

  • Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D.L.: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349–356 (2005)

    Article  Google Scholar 

  • Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)

    Google Scholar 

  • Beaumont, M.A., Cornuet, J.M., Marin, J.M., Robert, C.P.: Adaptivity for ABC algorithms: the ABC-PMC. Biometrika 96(4), 983–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-LASSO for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(15) (2010)

  • Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate and hierarchical models using auxiliary variables. J. R. Stat. Soc. B 61(2), 331–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)

    Article  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi:10.1007/s11222-011-9271-y

    Google Scholar 

  • Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, N.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3/4), 601–620 (2000)

    Article  Google Scholar 

  • Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(799), 799–805 (2004)

    Article  Google Scholar 

  • Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992)

    Article  Google Scholar 

  • Geyer, C.J.: Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–511 (1992)

    Article  Google Scholar 

  • Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC, Boca Raton (1996)

    Google Scholar 

  • Gottardo, R., Raftery, A.E.: Markov chain Monte Carlo with mixtures of singular distributions. Tech. Rep. 470, University of Washington, Department of Statistics (2004)

  • Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  • Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)

    Article  Google Scholar 

  • Husmeier, D., Dybowski, R., Roberts, S. (eds.): Probabilistic Modeling in Bioinformatics and Medical Informatics. Springer, Berlin (2005)

    Google Scholar 

  • Leclerc, R.D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4(213) (2008)

  • Leuenberger, C., Wegmann, D.: Bayesian computation and model selection without likelihoods. Genetics 183, 1–10 (2009)

    Article  Google Scholar 

  • Lund, R., Li, B.: Revisiting climate region definitions via clustering. Am. Meteorol. Soc. 22, 1787–1800 (2009)

    Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 100(26), 15324–15328 (2003)

    Article  Google Scholar 

  • Opgen-Rhein, R., Strimmer, K.: Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinf. 8(Suppl 2) (2007)

  • Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alché Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl. 2), ii138–ii148 (2003)

    Article  Google Scholar 

  • Pritchard, J.K., Seielstad, M.T., Perez-Lezann, A., Feldman, M.W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16, 1791–1798 (1999)

    Article  Google Scholar 

  • Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Southeran, E., Gaiba, A., Wild, D.L., Falciani, F.: Modeling T-cell activation using gene expression profiling and state-space model. Bioinformatics 20(9), 1361–1372 (2004)

    Article  Google Scholar 

  • Ratmann, O., Jorgensen, O., Hinkley, T., Stumpf, M., Richardson, S., Wiuf, C.: Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Comput. Biol. 3(11), 2266–2278 (2007). doi:10.1371/journal.pcbi.0030230

    Article  MathSciNet  Google Scholar 

  • Ratmann, O., Andrieu, C., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. 106(26), 10576–10581 (2009)

    Google Scholar 

  • Ratmann, O., Pudlo, P., Richardson, S., Robert, C.: Monte Carlo algorithms for model assessment via conflicting summaries. ArXiv e-prints 1106.5919v1 (2011)

  • Rau, A.: Reverse engineering gene networks using genomic time-course data. Ph.D. dissertation, Purdue University, West Lafayette, IN, USA (2010)

  • Rau, A., Jaffrézic, F., Foulley, J.L., Doerge, R.W.: An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol. 9(9), 1–28 (2010)

    MathSciNet  Google Scholar 

  • Robert, C.: Bayesian computational methods. http://arxiv.org/abs/1002.2702 (2010)

  • Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  • Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  • Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl 6(S9)), 1–22 (2007)

    Google Scholar 

  • Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760–1765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Toni, T., Stumpf, M.P.H.: Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1), 104–110 (2010)

    Article  Google Scholar 

  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamic systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  • Wegmann, D., Leuenberger, C., Excoffier, L.: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207–1218 (2009)

    Article  Google Scholar 

  • Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007)

    MathSciNet  Google Scholar 

  • Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122–133 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Rau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, A., Jaffrézic, F., Foulley, JL. et al. Reverse engineering gene regulatory networks using approximate Bayesian computation. Stat Comput 22, 1257–1271 (2012). https://doi.org/10.1007/s11222-011-9309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9309-1

Keywords