Abstract
Gene regulatory networks are collections of genes that interact with one other and with other substances in the cell. By measuring gene expression over time using high-throughput technologies, it may be possible to reverse engineer, or infer, the structure of the gene network involved in a particular cellular process. These gene expression data typically have a high dimensionality and a limited number of biological replicates and time points. Due to these issues and the complexity of biological systems, the problem of reverse engineering networks from gene expression data demands a specialized suite of statistical tools and methodologies. We propose a non-standard adaptation of a simulation-based approach known as Approximate Bayesian Computing based on Markov chain Monte Carlo sampling. This approach is particularly well suited for the inference of gene regulatory networks from longitudinal data. The performance of this approach is investigated via simulations and using longitudinal expression data from a genetic repair system in Escherichia coli.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alon, U.: Network motifs: theory and experimental approaches. Nat. Genet. Rev. 8, 450–461 (2007)
Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D.L.: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349–356 (2005)
Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)
Beaumont, M.A., Cornuet, J.M., Marin, J.M., Robert, C.P.: Adaptivity for ABC algorithms: the ABC-PMC. Biometrika 96(4), 983–990 (2009)
Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102, 84–92 (2007)
Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-LASSO for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(15) (2010)
Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979)
Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate and hierarchical models using auxiliary variables. J. R. Stat. Soc. B 61(2), 331–344 (1999)
Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68, 411–436 (2006)
Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi:10.1007/s11222-011-9271-y
Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225–233 (2011)
Friedman, N.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3/4), 601–620 (2000)
Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(799), 799–805 (2004)
Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992)
Geyer, C.J.: Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–511 (1992)
Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC, Boca Raton (1996)
Gottardo, R., Raftery, A.E.: Markov chain Monte Carlo with mixtures of singular distributions. Tech. Rep. 470, University of Washington, Department of Statistics (2004)
Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)
Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)
Husmeier, D., Dybowski, R., Roberts, S. (eds.): Probabilistic Modeling in Bioinformatics and Medical Informatics. Springer, Berlin (2005)
Leclerc, R.D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4(213) (2008)
Leuenberger, C., Wegmann, D.: Bayesian computation and model selection without likelihoods. Genetics 183, 1–10 (2009)
Lund, R., Li, B.: Revisiting climate region definitions via clustering. Am. Meteorol. Soc. 22, 1787–1800 (2009)
Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 100(26), 15324–15328 (2003)
Opgen-Rhein, R., Strimmer, K.: Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinf. 8(Suppl 2) (2007)
Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alché Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl. 2), ii138–ii148 (2003)
Pritchard, J.K., Seielstad, M.T., Perez-Lezann, A., Feldman, M.W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16, 1791–1798 (1999)
Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Southeran, E., Gaiba, A., Wild, D.L., Falciani, F.: Modeling T-cell activation using gene expression profiling and state-space model. Bioinformatics 20(9), 1361–1372 (2004)
Ratmann, O., Jorgensen, O., Hinkley, T., Stumpf, M., Richardson, S., Wiuf, C.: Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Comput. Biol. 3(11), 2266–2278 (2007). doi:10.1371/journal.pcbi.0030230
Ratmann, O., Andrieu, C., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. 106(26), 10576–10581 (2009)
Ratmann, O., Pudlo, P., Richardson, S., Robert, C.: Monte Carlo algorithms for model assessment via conflicting summaries. ArXiv e-prints 1106.5919v1 (2011)
Rau, A.: Reverse engineering gene networks using genomic time-course data. Ph.D. dissertation, Purdue University, West Lafayette, IN, USA (2010)
Rau, A., Jaffrézic, F., Foulley, J.L., Doerge, R.W.: An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol. 9(9), 1–28 (2010)
Robert, C.: Bayesian computational methods. http://arxiv.org/abs/1002.2702 (2010)
Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2004)
Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. 99(16), 10555–10560 (2002)
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)
Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl 6(S9)), 1–22 (2007)
Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760–1765 (2007)
Toni, T., Stumpf, M.P.H.: Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1), 104–110 (2010)
Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamic systems. J. R. Soc. Interface 6(31), 187–202 (2009)
Wegmann, D., Leuenberger, C., Excoffier, L.: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207–1218 (2009)
Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007)
Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122–133 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rau, A., Jaffrézic, F., Foulley, JL. et al. Reverse engineering gene regulatory networks using approximate Bayesian computation. Stat Comput 22, 1257–1271 (2012). https://doi.org/10.1007/s11222-011-9309-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-011-9309-1