Skip to main content
Log in

Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Particle filters (PF) and auxiliary particle filters (APF) are widely used sequential Monte Carlo (SMC) techniques. In this paper we comparatively analyse, from a non asymptotic point of view, the Sampling Importance Resampling (SIR) PF with optimal conditional importance distribution (CID) and the fully adapted APF (FA). We compute the (finite samples) conditional second order moments of Monte Carlo (MC) estimators of a moment of interest of the filtering pdf, and analyse under which circumstances the FA-based estimator outperforms (or not) the optimal Sequential Importance Sampling (SIS)-based one. Our analysis is local, in the sense that we compare the estimators produced by one time step of the different SMC algorithms, starting from a common set of weighted points. This analysis enables us to propose a hybrid SIS/FA algorithm which automatically switches at each time step from one loop to the other. We finally validate our results via computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In view of the analysis of Sects. 3 and 4 we consider the case where the number of samples N′ at time n is possibly different to that N at time n−1, even though in SMC techniques we often take N′=N.

  2. The bounds α n and β n given in Corollary 1 come from simple sufficient conditions, and no conclusion holds if N eff(n)∈(α n ,β n ); so for simplicity we choose in the algorithm threshold \(\frac{\alpha_{n} + \beta_{n}}{2}\). Also in practice, the time varying and difficult to compute thresholds α n and β n can be replaced by a common fixed value which nevertheless takes into account the parameters of the model; this will be our choice in the simulations section.

References

  • Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  • Cappé, O., Moulines, É., Rydén, T.: Inference in Hidden Markov Models. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Cornebise, J., Moulines, É., Olsson, J.: Adaptive methods for sequential importance sampling with application to state-space models. Stat. Comput. 18(4), 461–480 (2008)

    Article  MathSciNet  Google Scholar 

  • Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  • del Moral, P.: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications. Springer, New York (2004)

    Book  MATH  Google Scholar 

  • Desbouvries, F., Petetin, Y., Monfrini, E.: Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a matter of conditional independence. In: Proc. IEEE ICASSP, Prague, Czech Republic (2011)

    Google Scholar 

  • Douc, R., Cappé, O., Moulines, É.: Comparison of resampling schemes for particle filtering. In: Proc. of the 4th ISPA, Zagreb, Croatia (2005)

    Google Scholar 

  • Douc, R., Moulines, É., Olsson, J.: Optimality of the auxiliary particle filter. Probab. Math. Stat. 29(1), 1–28 (2009)

    MathSciNet  MATH  Google Scholar 

  • Doucet, A., Godsill, S.J., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  • Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science. Springer, New York (2001a)

    Google Scholar 

  • Doucet, A., Gordon, N.J., Krishnamurthy, V.: Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49(3), 613–624 (2001b)

    Article  Google Scholar 

  • Fearnhead, P.: Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Stat. Comput. 18(2), 151–171 (2008)

    Article  MathSciNet  Google Scholar 

  • Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140(2), 107–113 (1993)

    Google Scholar 

  • Hol, J.D., Schön, T.B., Gustafsson, F.: On resampling algorithms for particle filtering. In: Proc. IEEE NSSPW, Cambridge, UK (2006)

    Google Scholar 

  • Johansen, A.M., Doucet, A.: A note on the auxiliary particle filter. Stat. Probab. Lett. 78(12), 1498–1504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  • Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  • Künsch, H.R.: State space and hidden Markov models. In: Barndorff-Nielsen, O.E., Cox, D.R., Klüppelberg, C. (eds.) Complex Stochastic Systems. Monographs on Statistics and Applied Probability, vol. 87, pp. 109–173. Chapman and Hall/CRC, New York (2001)

    Google Scholar 

  • Künsch, H.: Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Stat. 33(5), 1983–2021 (2005)

    Article  MATH  Google Scholar 

  • Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6, 113–119 (1996)

    Article  Google Scholar 

  • Liu, J.S., Chen, R.: Blind deconvolution via sequential imputation. J. Am. Stat. Assoc. 90(430), 567–576 (1995)

    Article  MATH  Google Scholar 

  • Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

    Article  MATH  Google Scholar 

  • Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle filter. J. Am. Stat. Assoc. 94(446), 550–599 (1999)

    Article  MathSciNet  Google Scholar 

  • Ripley, B.D.: Stochastic Simulation. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  • Saha, S., Manda, P.K., Boers, Y., Driessen, H., Bagchi, A.: Gaussian proposal density using moment matching in SMC methods. Stat. Comput. 19(2), 203–208 (2009)

    Article  MathSciNet  Google Scholar 

  • van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The unscented particle filter. In: Advances in Neural Information Processing Systems, vol. 13, pp. 584–590 (2001)

    Google Scholar 

  • Whiteley, N., Johansen, A.M.: Recent developments in auxiliary particle filtering. In: Barber, D. Cemgil, A.T. Chiappa, S. (eds.) Inference and Learning in Dynamic Models. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Zaritskii, V., Svetnik, V., Shimelevich, L.: Monte Carlo technique in problems of optimal data processing. Autom. Remote Control, 12, 95–103 (1975)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French MOD DGA/MRIS for financial support of the Ph.D. of Y. Petetin, and Dr. E. Monfrini for fruitful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Desbouvries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petetin, Y., Desbouvries, F. Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis. Stat Comput 23, 759–775 (2013). https://doi.org/10.1007/s11222-012-9345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9345-5

Keywords

Navigation