Skip to main content
Log in

Variational approximations in geoadditive latent Gaussian regression: mean and quantile regression

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Geoadditive regression models define a comprehensive class of statistical models that allow to capture a variety of different effects on a response variable of interest, including nonlinear effects of continuous covariates and spatial effects as special cases. We develop variational approximations for Bayesian inference in geoadditive regression models to provide a computationally attractive, fast alternative to Markov chain Monte Carlo simulations. Therefore we consider the class of latent Gaussian regression models where the distribution of the response can be represented as a location-scale mixture of Gaussians such that the calculation of quasi-full conditionals in the variational approximations is considerably facilitated. As special cases, we consider mean and quantile regression and evaluate the novel variational Bayes approaches in a simulation study. As an application, we focus on the analysis of technical efficiencies of British and Welsh farms where the response variable of interest is the output produced by a farm given specific input covariates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669–679 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (2003). In: Beal, M.J., Ghahramani, Z. (eds) The variational bayesian em algorithm for incomplete data: with application to scoring graphical model structures.

  • Brezger, A., Lang, S.: Generalized structured additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967–991 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Department for Environment, Food and Rural Affairs and National Assembly for Wales, Farm Business Survey, 2006–2007. Colchester, Essex: UK Data Archive (May 2008). SN: 5838. http://dx.doi.org/10.5255/ukda-sn-5838-1

  • Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression for space-time data: a Bayesian perspective. Stat. Sinica 14, 731–761 (2004)

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Kneib, T., Lang, S.: Regression—Models, Methods and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Fenske, N., Kneib, T., Hothorn, T.: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J. Am. Stat. Assoc. 106, 494–510 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Kaditi, E. A., Nitsi, E.: Applying regression quantiles to farm efficiency estimation. 2010 Annual Meeting, July 25–27, 2010, Denver, Colorado 61081, Agricultural and Applied Economics Association (2010)

  • Koenker, R.: Quantile Regression. Number 9780521608275 in Cambridge Books. Cambridge University Press (2005)

  • Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Kozubowski, T., Podgórski, C.: A class of asymmetric distributions. Acturial research clearing house 1 (1999)

  • Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13, 183–212 (2004)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K., Kneib T.: Multilevel structured additive regression. Stat. Comput. 24, 223–238 (2013)

  • Luts, J., Broderick, T., Wand, M.: Real-time semiparametric regression. arXiv, preprint, arXiv:1209.3550 (2013)

  • Neville, S.E., Palmer, M.J., Wand, M.P.: Generalized extreme value additive model analysis via mean field variational bayes. Aust. N. Z. J. Stat. 53(3), 305–330 (2011)

    Article  MathSciNet  Google Scholar 

  • Oh, H.-S., Lee, T.C.M., Nychka, D.W.: Fast nonparametric quantile regression with arbitrary smoothing methods. J. Comput. Graph. Stat. 20, 510–526 (2011)

    Article  MathSciNet  Google Scholar 

  • Ormerod, J., Wand, M.: Explaining variational approximations. Am. Stat. 64(2), 140–153 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Ormerod, J.T.: Grid based variational approximations. Comput. Stat. Data Anal. 55(1), 45–56 (2011, January)

  • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0

  • Ren, Q., Banerjee, S., Finley, A.O., Hodges, J.S.: Variational bayesian methods for spatial data analysis. Comput. Stat. Data Anal. 55(12), 3197–3217 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. J. R. Stat. Soc. Ser. B 71(2), 319–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Waldmann, E., Kneib, T., Lang, S., Yue, Y., Flexeder, C.: Bayesian semiparametric additive quantile regression. Stat. Model. 13, 223– 252 (2013)

  • Wand, M., Ormerod, J.: Continued fraction enhancement of bayesian computing. Stat 1, 31–41 (2012)

    Article  Google Scholar 

  • Wand, M., Ormerod, J., Padoan, S., Fruhwirth, R.: Mean field variational bayes for elaborate distributions. Bayesian Anal. 6(4), 847–900 (2011)

    MathSciNet  Google Scholar 

  • Woolrich, M.W., Behrens, T.E.J.: Variational bayes inference of spatial mixture models for segmentation. IEEE Trans. Med. Imaging 25(10), 1380–1391 (2006)

    Article  Google Scholar 

  • Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Yue, Y., Rue, H.: Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55, 84–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Waldmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldmann, E., Kneib, T. Variational approximations in geoadditive latent Gaussian regression: mean and quantile regression. Stat Comput 25, 1247–1263 (2015). https://doi.org/10.1007/s11222-014-9480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9480-2

Keywords