Skip to main content
Log in

Inference in finite state space non parametric Hidden Markov Models and applications

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Hidden Markov models (HMMs) are intensively used in various fields to model and classify data observed along a line (e.g. time). The fit of such models strongly relies on the choice of emission distributions that are most often chosen among some parametric family. In this paper, we prove that finite state space non parametric HMMs are identifiable as soon as the transition matrix of the latent Markov chain has full rank and the emission probability distributions are linearly independent. This general result allows the use of semi- or non-parametric emission distributions. Based on this result we present a series of classification problems that can be tackled out of the strict parametric framework. We derive the corresponding inference algorithms. We also illustrate their use on few biological examples, showing that they may improve the classification performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allman, E.S., Matias, C., Rhodes, J.: Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 37, 3099–3132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • An, Y., Hu, Y., Hopkins, J., Shum, M.: Identifiability and inference of hidden Markov models. Technical report (2013)

  • Baudry, J.-P., Raftery, A.E., Celeux, G., Lo, K., Gottardo, R.: Combining mixture components for clustering. J. Comput. Gr. Stat. 19(2), 332–353 (2010)

    Article  MathSciNet  Google Scholar 

  • Benaglia, T., Chauveau, D., Hunter, D.R.: An EM-like algorithm for semi-and nonparametric estimation in multivariate mixtures. J. Comput. Gr. Stat. 18(2), 505–526 (2009)

    Article  MathSciNet  Google Scholar 

  • Bérard, C., Martin-Magniette, M.L., Brunaud, V., Aubourg, S., Robin, S.: Unsupervised classification for tiling arrays: ChIP-chip and transcriptome. Stat. Appl. Genet. Mol. Biol. 10(1), 1–22 (2011)

    MathSciNet  Google Scholar 

  • Bordes, L., Mottelet, S., Vandekerkhove, P.: Semiparametric estimation of a two components mixture model. Ann. Stat. 34, 1204–1232 (2006a)

    Article  MATH  MathSciNet  Google Scholar 

  • Bordes, L., Delmas, C., Vandekerkhove, P.: Semiparametric estimation of a two-component mixture model where one component is known. Scand. J. Stat. 33(4), 733–752 (2006b)

    Article  MATH  MathSciNet  Google Scholar 

  • Butucea, C., Vandekerkhove, P.: Semiparametric mixtures of symmetric distributions. Scand. J. Stat. 41(1), 227–239 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Cappé, O., Moulines, E., Rydén, T.: Inference Hidden Markov Models. Springer, New York (2005)

    MATH  Google Scholar 

  • Couvreur, L., Couvreur, C.: Wavelet based non-parametric HMMs: theory and methods. In: ICASSP ’00 Proceedings, pp. 604–607 (2000)

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  • DeSantis, S.M., Bandyopadhyay, D.: Hidden Markov models for zero-inflated Poisson counts with an application to substance use. Stat. Med. 30(14), 1678–1694 (2011)

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Density estimation by wavelet thresholding. Ann. Stat. 24(2), 508–539 (1996)

  • Du, J., Rozowsky, J.S., Korbel, J.O., Zhang, Z.D., Royce, T.E., Schultz, M.H., Snyder, M., Gerstein, M.: A supervised hidden Markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge. Bioinformatics 22(24), 3016–3024 (2006)

    Article  Google Scholar 

  • Dumont, T., Le Corff, S.: Nonparametric regression on hidden phi-mixing variables: identifiability and consistency of a pseudo-likelihood based estimation procedure. Technical report, arXiv:1209.0633D (Sep., 2012)

  • Durot, C., Huet, S., Koladjo, F., Robin, S.: Least-squares estimation of a convex discrete distribution. Comput. Stat. Data Anal. 67, 282–298 (2013)

  • Gassiat, E., Rousseau, J.: Non parametric finite translation hidden Markov models and extensions. Bernoulli. to appear (2014)

  • Hall, P., Zhou, X.-H.: Nonparametric estimation of component distributions in a multivariate mixture. Ann. Stat. 31(1), 201–224 (2003)

  • Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden Markov models. J. Comput. Syst. Sci. 78, 1460–1480 (2012)

  • Jin, N., Mokhtarian, F.: A non-parametric HMM learning method for shape dynamics with application to human motion recognition. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 2, pp. 29–32. IEEE (2006)

  • Lambert, M., Whiting, J., Metcalfe, A.: A non-parametric hidden Markov model for climate state identification. Hydrol. Earth Syst. Sci. 7(5), 652–667 (2003)

    Article  Google Scholar 

  • Lefèvre, F.: Non-parametric probability estimation for HMM-based automatic speech recognition. Comput. Speach Lang. 17, 113–136 (2003)

    Article  Google Scholar 

  • Levine, M., Hunter, D.R., Chauveau, D.: Maximum smoothed likelihood for multivariate mixtures. Biometrika. 98(2), 403–416 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Li, H., Zhang, K., Jiang, T.: The regularized EM algorithm. In: Proceedings of the National Conference on Artificial Intelligence, vol. 20, p. 807. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2005)

  • Lin, T.I., Lee, J.C., Yen, S.Y.: Finite mixture modelling using the skew normal distribution. Stat. Sin. 17(3), 909–927 (2007)

    MATH  MathSciNet  Google Scholar 

  • Massart, P.: Concentration inequalities and model selection. Volume 1896 of Lecture Notes in Mathematics. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard. Springer, Berlin (2007)

  • Maugis, C., Michel, B.: A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM Probab. Stat. 15, 41–68 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Olteanu, M., Ridgway, J., et al.: Hidden Markov models for time series of counts with excess zeros. Proc. ESANN 2012, 133–138 (2012)

    Google Scholar 

  • Petrie, T.: Probabilistic functions of finite state Markov chains. Ann. Math. Stat. 40, 97–115 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  • Shang, L., Chan, K.: Nonparametric discriminant HMM and application to facial expression recognition. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 2090–2096 (2009)

  • Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical Analysis of Finite Mixture Distributions. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Wiley, Chichester (1985)

    Google Scholar 

  • Tune, P., Nguyen, H. X., Roughan, M.: Hidden Markov model identifiability via tensors. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2299–2303. IEEE (2013)

  • van de Geer, S.A.: Empirical processes in M-estimation. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Vernet, E.: Posterior consistency for nonparametric Hidden Markov Models with finite state space. Technical report, arXiv:1311.3092V (2013)

  • Volant, S., Bérard, C., Martin-Magniette, M.-L., Robin, S.: Hidden Markov models with mixtures as emission distributions. Stat. Comput. 1–12 (2013). doi:10.1007/s11222-013-9383-7

  • Yakowitz, S.J., Spragins, J.D.: On the identifiability of finite mixtures. Ann. Math. Stat. 39, 209–214 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhai, Z., Ku, S.-Y., Luan, Y., Reinert, G., Waterman, M.S., Sun, F.: The power of detecting enriched patterns: an HMM approach. J. Comput. Biol. 17(4), 581–592 (2010)

Download references

Acknowledgments

The authors want to thank Caroline Bérard for providing the transcriptomic tiling array data. Part of this work was supported by the ABS4NGS ANR project (ANR-11-BINF-0001-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Robin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gassiat, E., Cleynen, A. & Robin, S. Inference in finite state space non parametric Hidden Markov Models and applications. Stat Comput 26, 61–71 (2016). https://doi.org/10.1007/s11222-014-9523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9523-8

Keywords

Navigation