Skip to main content
Log in

Conditional vs marginal estimation of the predictive loss of hierarchical models using WAIC and cross-validation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The predictive loss of Bayesian models can be estimated using a sample from the full-data posterior by evaluating the Watanabe-Akaike information criterion (WAIC) or using an importance sampling (ISCVL) approximation to leave-one-out cross-validation loss. With hierarchical models the loss can be specified at different levels of the hierarchy, and in the published literature, it is routine for these estimators to use the conditional likelihood provided by the lowest level of model hierarchy. However, the regularity conditions underlying these estimators may not hold at this level, and the behaviour of conditional-level WAIC as an estimator of conditional-level predictive loss must be determined on a case-by-case basis. Conditional-level ISCVL does not target conditional-level predictive loss and instead is an estimator of marginal-level predictive loss. Using examples for analysis of over-dispersed count data, it is shown that conditional-level WAIC does not provide a reliable estimator of its target loss, and simulations show that it can favour the incorrect model. Moreover, conditional-level ISCVL is numerically unstable compared to marginal-level ISCVL. It is recommended that WAIC and ISCVL be evaluated using the marginalized likelihood where practicable and that the reliability of these estimators always be checked using appropriate diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, W.-Y., Vasilev, G., Lee, S.-H., Busemeyer, J.R., Kruschke, J.K., Bechra, A., Vassileva, J.: Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Front. Psychol. 5, 15 (2014). doi:10.3389/fpsyg.2014.00849

    Article  Google Scholar 

  • Alderman, D.L., Powers, D.E.: The effects of special preparation on SAT-verbal scores. Am. Edu. Res. J. 17, 239–251 (1980)

    Article  Google Scholar 

  • Anderson, M.J., Millar, R.B.: Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. J. Exp. Mar. Biol. Ecol. 305, 191–221 (2004)

    Article  Google Scholar 

  • Burman, P.: A comparative study of ordinary cross-validation, \(v\)-fold cross-validation and the repeated learning-testing methods. Biometrika 76, 503–514 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Geisser, S., Eddy, W.F.: A predictive approach to model selection. J. Am. Stat. Assoc. 74, 153–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E., Dey, D.K.: Bayesian model choice: Asymptotics and exact calculations. J. R. Stat. Soc. Ser. B 56, 501–514 (1994)

    MathSciNet  MATH  Google Scholar 

  • Gelman, A., Hwang, J., Vehtari, A.: Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Meng, X.-L.: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13, 163–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Geweke, J.: Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernado, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics 4. Clarendon Press, Oxford (1992)

    Google Scholar 

  • Ionides, E.L.: Truncated importance sampling. J. Comput. Gr. Stat. 17, 295–311 (2008)

    Article  MathSciNet  Google Scholar 

  • Kadane, J.B., Lazar, N.A.: Methods and criteria for model selection. J. Am. Stat. Assoc. 99, 279–290 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., Qiu, S., Zhang, B., Feng, C.X.: Approximating cross-validatory predictive evaluation in Bayesian latent variable models with integrated IS and WAIC. Stat. Comput. 26, 881–897 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Ansari, A.: A Bayesian approach for endogeneity and heterogeneity in choice models. Manag. Sci. 60, 1161–1179 (2014)

    Article  Google Scholar 

  • Millar, R.B.: Assessment of locally influential observations in Bayesian models. Bayesian Anal. 2, 365–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Millar, R.B., Stewart, W.S.: Assessment of locally influential observations in Bayesian models. Bayesian Anal. 2, 365–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Onogi, A., Ideta, O., Yoshioka, T., Ebana, K., Yamasaki, M., Iwata, H.: Uncovering a nuisance influence of a phenological trait of plants using a nonlinear structural equation: Application to days to heading and culm length in Asian cultivated rice ( Oryza Sativa L). PloS One (2016). doi:10.1371/journal.pone.0148609

  • Roever, C.L., Beyer, H.L., Chase, M.J., van Aarde, R.J.: The pitfalls of ignoring behaviour when quantifying habitat selection. Divers. Distrib. 20, 322–333 (2014)

    Article  Google Scholar 

  • Sekar, N., Giam, X., Sharma, N.P., Sukumar, R.: How much dillenia indica seed predation occurs from asian elephant dung? Acta Oecol. 70, 53–59 (2016)

    Article  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.R., van der Linde, A.: Bayesian measures of model complexity and fit (with Discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–616 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Vehtari, A., Gelman, A., Gabry, J.: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Comput. Stat. (2016). doi:10.1007/s11222-016-9696-4

    MATH  Google Scholar 

  • Vehtari, A., Lampinen, J.: Bayesian model assessment and comparison using cross-validation predictive densities. Neural Comput. 14, 2439–2468 (2002)

    Article  MATH  Google Scholar 

  • Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., Winther, O.: Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. J. Mach. Learn. Res. 17, 1–38 (2016)

    MathSciNet  MATH  Google Scholar 

  • Vehtari, A., Ojanen, J.: A survey of bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6, 142–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe, S.: Algebraic analysis for singular statistical estimation. In: Watanabe, O., Yokomori, T., (eds.) Algorithmic Learning Theory. Lecture Notes in Computer Science. Vol 1720. Spring, Berlin Heidelberg, (1999)

  • Watanabe, S.: Algebraic Geometry and Statistical Learning Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  • Watanabe, S.: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010a)

    MathSciNet  MATH  Google Scholar 

  • Watanabe, S.: Asymptotic learning curve and renormalizable condition in statistical learning theory. J. Phys. Conf. Ser. 233, 012014 (2010b)

    Article  Google Scholar 

  • Watanabe, S.: Equations of state in singular statistical estimation. Neural Netw. 23, 20–34 (2010c)

    Article  Google Scholar 

  • Watanabe, S.: Equations of states in statistical learning for a nonparametrizable and regular case. IEICE Trans. E 93A(3), 617–626 (2010d)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell B. Millar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millar, R.B. Conditional vs marginal estimation of the predictive loss of hierarchical models using WAIC and cross-validation. Stat Comput 28, 375–385 (2018). https://doi.org/10.1007/s11222-017-9736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9736-8

Keywords

Navigation