Abstract
Various nonparametric and parametric estimators of extremal dependence have been proposed in the literature. Nonparametric methods commonly suffer from the curse of dimensionality and have been mostly implemented in extreme-value studies up to three dimensions, whereas parametric models can tackle higher-dimensional settings. In this paper, we assess, through a vast and systematic simulation study, the performance of classical and recently proposed estimators in multivariate settings. In particular, we first investigate the performance of nonparametric methods and then compare them with classical parametric approaches under symmetric and asymmetric dependence structures within the commonly used logistic family. We also explore two different ways to make nonparametric estimators satisfy the necessary dependence function shape constraints, finding a general improvement in estimator performance either (i) by substituting the estimator with its greatest convex minorant, developing a computational tool to implement this method for dimensions \(D\ge 2\) or (ii) by projecting the estimator onto a subspace of dependence functions satisfying such constraints and taking advantage of Bernstein–Bézier polynomials. Implementing the convex minorant method leads to better estimator performance as the dimensionality increases.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley, Hoboken (2004)
Berghaus, B., Bücher, A., Dette, H.: Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence. J. de la Soc. de Fr. de Stat. 154(1), 116–137 (2013)
Bücher, A., Dette, H., Volgushev, S.: New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Stat. 39(4), 1963–2006 (2011)
Camicer, J., Peña, J.: Shape preserving representations and optimality of the Bernstein basis. Adv. Comput. Math. 1, 173–196 (1993)
Capéràa, B.Y.P., Fougères, A.: Estimation of a bivariate extreme value distribution. Extremes 3, 311–329 (2000)
Capéràa, B.Y.P., Fougères, A., Genest, C.: A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577 (1997)
Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. B 53(2), 377–392 (1991)
Cooley, D., Naveau, P., Poncet, P.: Variograms for Spatial Max-stable Random Fields, 373–390. Lecture notes in Statistics 187. Springer, New York (2006)
Cormier, E., Genest, C., Nešlehová, J.G.: Using B-splines for nonparametric inference on bivariate extreme-value copulas. Extremes 17, 633–659 (2014)
Davison, A.C., Gholamrezaee, M.M.: Geostatistics of extremes. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 581–608 (2012)
de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)
de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 40, 317–337 (1977)
Deheuvels, P.: On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probab. Lett. 12, 429–439 (1991)
Einmahl, J.H., de Haan, L., Piterbarg, V.I.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29(5), 1401–1423 (2001)
Einmahl, J.H., Segers, J.: Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. Ann. Stat. 37(5), 2953–2989 (2009)
Fils-Villetard, A., Guillou, A., Segers, J.: Projection estimators of Pickands dependence functions. Can. J. Stat. 36(3), 369–382 (2008)
Fougères, A.: Multivariate extremes. In: Extreme Values in Finance, Telecommunications, and the Environment, chapter pp. 377–388. Chapman and Hall (2004)
Genest, C., Nešlehová, J., Quessy, J.-F.: Tests of symmetry for bivariate copulas. Ann. Inst. Stat. Math. 64, 811–834 (2011)
Genest, C., Segers, J.: Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 37(5B), 2990–3022 (2009)
Gentle, J.E.: Elements of Computational Statistics. Springer, New York (2002)
Gudendorf, G., Segers, J.: Extreme-value copulas. In: Jaworski, W.H.P., Durante, F., Rychlik, T. (eds.) Proceedings of the Workshop on Copula Theory and its Applications, pp. 127–146. Springer (2010)
Gudendorf, G., Segers, J.: Nonparametric estimation of an extreme-value copula in arbitrary dimensions. J. Multivar. Anal. 102(1), 37–47 (2011)
Gudendorf, G., Segers, J.: Nonparametric estimation of multivariate extreme-value copulas. J. Stat. Plan. Inference 142(12), 3073–3085 (2012)
Guillotte, S.: A Bayesian estimator for the dependence function of a bivariate extreme-value distribution. Can. J. Stat. 36(3), 383–396 (2008)
Gumbel, E.J.: Distributions des valeurs extrêmes en plusieurs dimensions. Publ. de l’Inst. de Stat. de l’Univ. Paris 9(294), 171–173 (1960a)
Gumbel, E.J.: Bivariate exponential distributions. J. Am.Stat. Assoc. 55, 698–707 (1960b)
Hall, P., Tajvidi, N.: Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 5, 835–844 (2000)
Hofert, M., Kojadinovic, I., Mächler, M., Yan, J.: Copula: multivariate dependence with copulas. R package version 0.999-12 (2014)
Huser, R., Davison, A.C., Genton, M.G.: Likelihood estimators for multivariate extremes. Extremes 19, 79–103 (2016)
Jiménez, J.R., Villa-Diharce, E., Flores, M.: Nonparametric estimation of the dependence function in bivariate extreme value distributions. J. Multivar. Anal. 76, 159–191 (2001)
Khoudraji, A.: Contributions à l’étude des copules et à la modélisation de valeurs extrêmes bivariées. Ph.D. thesis. Université Laval, Québec, Canada (1995)
Li, B., Genton, M.G.: Nonparametric identification of copula structures. J. Am. Stat. Assoc. 108(502), 666–675 (2013)
Liebscher, E.: Construction of asymmetric multivariate copulas. J. Am. Stat. Assoc. 99(10), 2234–2250 (2008)
Lorenz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company, New York (1986)
Marcon, G., Padoan, S.A., Antoniano-Villalobos, I.: Bayesian inference for the extremal dependence. Electron. J. Stat. 10(2), 3310–3337 (2016)
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P., Segers, J.: Nonparametric estimation of the Pickands dependence function using Bernstein polynomials. J. Stat. Plan. Inference 183, 1–17 (2017)
Matheron, G.: Suffit-il, pour une covariance, d’être de type positif? Sci. de la Terre, Série Informatique Géologique 26, 51–66 (1987)
Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space. Biometrika 96(1), 1–17 (2009)
Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)
Padoan, Sa, Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. J. Am. Stat. Assoc. 105(489), 263–277 (2010)
Pickands, J.: Mutivariate extreme value distributions. Bulletin of the International Statistical Institute (Proceedings of the 43rd Session). pp. 859–878 (1981)
Pickands, J.: Multivariate Negative Exponential and Extreme Value Distributions, vol. 51. Springer, Berlin (1989)
Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, Berlin (1987)
Ressel, P.: Homogeneous distributions–and a spectral representation of classical mean values and stable tail dependence functions. J. Multivar. Anal. 117, 246–256 (2013)
Sauer, T.: Multivariate Bernstein polynomials and convexity. Comput. Aided Geom. Des. 8(6), 465–478 (1991)
Schlather, M., Tawn, J.A.: Inequalities for the extremal coefficients of multivariate extreme value distributions. Extremes 5, 87–102 (2002)
Schlather, M., Tawn, J.A.: A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1), 139–156 (2003)
Segers, J.: Non-Parametric Inference for Bivariate Extreme-Value Copulas. In: Ahsanullah, M., Kirmani, S.N.U.A. (eds.) Topics in Extreme Values, pp. 181–203. Nova Science Publishers Inc, New York (2007)
Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript. University of North Carolina, Chapel Hill, U. S. (1990)
Smith, R.L., Tawn, J.A., Yuen, H.K.: Statistics of multivariate extremes. Int. Stat. Rev. 58(1), 47–58 (1990)
Stephenson, A.G.: High-dimensional parametric modelling of multivariate extreme events. Aust. N. Z. J. Stat. 51(1), 77–88 (2009)
Tawn, J.A.: Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415 (1988)
Tawn, J.A.: Modelling multivariate extreme value distributions. Biometrika 77(2), 245–253 (1990)
Varin, B.C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 92(3), 519–528 (2005)
Varin, C.: On composite marginal likelihoods. AStA Adv. Stat. Anal. 92(1), 1–28 (2008)
Zhang, D., Wells, M.T., Peng, L.: Nonparametric estimation of the dependence function for a multivariate extreme value distribution. J. Multivar. Anal. 99(4), 577–588 (2008)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendices
Appendix 1: Nonparametric estimators
If \({\mathbf {Z}}=(Z_1,\ldots ,Z_D)^{\top }\) is a max-stable vector with distribution \(G({\mathbf {z}})\) (1) and estimated margins \({\hat{G}}_d\) (3), then the variable
has survival function
where \(t\ge 0\). Thus, the random variable \(\kappa \left( \varvec{\omega }\right) \) has standard exponential distribution with
where \(\eta \) is the Euler–Mascheroni constant. The most popular nonparametric estimators of \(A(\varvec{\omega })\) are based on the equations in (16). For instance, Pickands (1981) proposed to estimate the dependence function by the reciprocal of the sample mean of \(\kappa \left( \varvec{\omega }\right) \), i.e.
where \(\kappa _i\left( \varvec{\omega }\right) \) is the empirical counterpart of (15) using sample maxima \({\mathbf {m}}_i\). While \({\hat{A}}_n^{\text {RP}}(\varvec{\omega })\) provides a sensible estimation of \(A(\varvec{\omega })\), it does not satisfy any of the conditions A1, A2 and A3. As such, Hall and Tajvidi (2000) proposed a variant which verifies A2 and A3, defined as
where \({\bar{m}}^{-1}_{M;d}=M^{-1} \sum _{i=1}^{M} {\tilde{m}}^{-1}_{i;d}, \;d=1,\ldots ,D\), and \({\tilde{m}}\) as defined in (4). The second equation in (16) leads to another dependence function estimator
However, \({\hat{A}}^*\left( \varvec{\omega }\right) \) does not satisfy any of the constraints A1, A2, A3 either. Capéràa et al. (1997) further modified (16) introducing an estimator meeting the constraint A3 for \(D=2\); its extension to arbitrary dimension, provided by Zhang et al. (2008), see also Gudendorf and Segers (2011), corresponds to the following estimator
where the \(\delta _d, d=1,\ldots ,D\), are continuous functions verifying \(\delta _d({\mathbf {e}}_k)=1_{(d=k)}\) for all \(d,k=1,\ldots ,D\). In particular, in the present paper we use \(\delta _d(\varvec{\omega })=\omega _d\). See Gudendorf and Segers (2010) for a more complete explanation of the construction of the above estimators and Segers (2007) for a review of their properties.
Another type of nonparametric estimator of the dependence function can be based on the madogram (Matheron 1987; Cooley et al. 2006). The multivariate madogram is defined as (see Naveau et al. 2009) the expected value of the difference between the maximum and the mean of the rescaled variables \(G({\mathbf {Z}})^{\varvec{\omega }^{-1}}\), i.e.
The estimator suggested by Marcon et al. (2017) consists of a slight modification of the estimator introduced by Naveau et al. (2009) for \(D=2\) that satisfies the conditions A2 and A3 and applies to high dimensions. It is defined as
where \(c(\varvec{\omega })=D^{-1}\sum ^D_{d=1}\omega _d/(1+\omega _d)\) and \({\hat{\nu }}_{M}\) denotes the following estimator of the multivariate madogram (21):
Finally, Cormier et al. (2014) proposed to estimate the Pickands dependence function through a graphical tool. Given the bivariate copula \(C(u_1, u_2)\), consider the transformation
where for each \(i =1,\ldots , n, {\hat{C}}_n\) denote the empirical copula. The Pickands dependence function is approximated by fitting to the points \((t_1, z_1), \ldots , (t_n, z_n)\) a constrained B-spline smoothing of order \(m = 3\) for a suitable sequence of k interior knots, \(\beta _1, \ldots , \beta _{m+k}\) and B-spline basis \(\epsilon _{1;m}, \ldots , \epsilon _{m+k;m}\), i.e.
where \({\hat{\beta }}_j\) is an estimate of \(\beta _j\) for each \(j =1,\ldots ,m + k\).
Appendix 2: Parametric models for the dependence function
Several parametric models to describe extremal dependence have been proposed in the literature. The logistic model, introduced by Gumbel (1960a, b), is one of the most widely used thanks to its simplicity. It has dependence function of the form
with dependence parameter \(0<\alpha \le 1\). The strength of dependence decreases as \(\alpha \) increases. In particular, the cases of independence and perfect dependence correspond to \(\alpha =1\) and \({\alpha \downarrow 0}\), respectively. When \(D=2\), the model (24) simplifies to \(A(\omega )=\left\{ \left( 1-\omega \right) ^{1/\alpha }+\omega ^{1/\alpha }\right\} ^{\alpha }, \omega \in [0,1]\).
A limitation of the logistic model resides in its lack of flexibility as its dependence structure relies on only one parameter and it does not allow for asymmetry, i.e. the margins are exchangeable. An asymmetric generalisation was suggested by Tawn (1988) for dimension \(D=2\) and extended to higher dimensions by Tawn (1990); see also Smith et al. (1990), Coles and Tawn (1991) and Stephenson (2009). The asymmetric logistic model has dependence function
with dependence parameters \(0<\alpha _C \le 1\) and asymmetry parameters \(\phi _{Cd}=0\) if \(d\notin C, 0\le \phi _{Cd}\le 1\) for \(d=1,\ldots ,D\), with \(\sum _{C \in S} \phi _{Cd}=1\), where S is the set of all non-empty subsets of \({\mathcal {D}}=\{1,\ldots ,D\}\). When \(D=2\), the model (25) simplifies to \(A(\omega )=(\phi _2-\phi _1)\omega +1-\phi _2+\left[ \left\{ \phi _2(1-\omega )\right\} ^{1/\alpha }+(\phi _1\omega )^{1/\alpha }\right] ^{\alpha }, \omega \in [0,1]\), with dependence parameter \(0<\alpha \le 1\) and asymmetry parameters \(0\le \phi _1, \phi _2\le 1\). The extent of asymmetry in the bivariate dependence structure decreases as the asymmetry parameters \(\phi _1\) and \(\phi _2\) approach unity. The symmetric case arises when \(\phi _1=\phi _2=1\). Without much loss of flexibility, \(\phi _1\) or \(\phi _2\) could be fixed to 1 (Tawn 1988). Independence corresponds to \(\phi _1=\phi _2=1\) and \(\alpha =1\), whereas perfect dependence corresponds to \(\phi _1=0\) or \(\phi _2=0\) or \(\alpha \downarrow 0\).
Appendix 3: Proof of equation (11)
If \({\mathbf {U}}=(U_1,\ldots ,U_D)^\top \sim C_1(u_{1},\ldots ,u_{D})\), where \(C_1\) denotes the outer power Clayton copula with generator \(\varphi (t)=(t^{\alpha }+1)^{-1}\), then the random vector \({\mathbf {X}}=\left\{ -1/\hbox {log}(U_1),\right. \left. \ldots ,-1/\hbox {log}(U_D)\right\} ^\top \) is distributed according to the same copula \(C_1\) and its marginal distributions are unit Fréchet. According to Fougères (2004, p. 376), taking the sequences \({\mathbf {a}}_{n}=(n, \ldots ,n)^\top \) and \({\mathbf {b}}_{n}=(0, \ldots ,0)^\top \) defined in Sect. 1, the distribution of \({\mathbf {X}}\) is in the MDA of the logistic distribution (24). This means that, defining
one has
where \(V\left( x_1,\ldots ,x_D\right) =\left( \sum _{d=1}^D x_d^{-1/\alpha }\right) ^\alpha , \alpha \in (0,1]\). Now, notice that any vector \(\mathbf {U^*}=(U^*_1,\ldots ,U^*_D)^\top \) distributed as \(\mathbf {U^*}\sim C_2({\mathbf {u}}^*)=C_{1}(u_{1}^{\phi _1},\ldots ,u_{D}^{\phi _D})\prod _{d=1}^Du_{d}^{1-\phi _d}\) has uniform margins and may be represented by setting \(U_d^*=\max \left\{ U_d^{1/\phi _d},{\tilde{U}}_d^{1/(1-\phi _d)}\right\} , d=1,\ldots ,D\), with \((U_1,\ldots ,U_D)^T\sim C_1(u_1,\ldots ,u_D)\), independent of \({\tilde{U}}_d \underset{\text { i.i.d.}}{\sim } \text {Unif}(0,1)\). Therefore, writing \(M_{n;d}^*=\underset{1\le i\le n}{\text {max}}\left\{ -1/\hbox {log}(U_{i;d}^*)\right\} \) and \({\tilde{M}}_{n;d}=\underset{1\le i\le n}{\text {max}}\left\{ -1/\hbox {log}({\tilde{U}}_{i;d})\right\} , d=1,\ldots ,D\), one obtains
which is a multivariate extreme-value distribution with exponent function
Applying (2) we obtain
which is a special case of the asymmetric logistic model dependence function in (25).
Rights and permissions
About this article
Cite this article
Vettori, S., Huser, R. & Genton, M.G. A comparison of dependence function estimators in multivariate extremes. Stat Comput 28, 525–538 (2018). https://doi.org/10.1007/s11222-017-9745-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-017-9745-7