Skip to main content
Log in

Modeling volatility for high-frequency data with rounding error: a nonparametric Bayesian approach

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Rounding is a pivotal source of market microstructure noise which should be carefully addressed in high-frequency data analysis. This study incorporates available market information in modeling rounding errors and proposes a Rounding Error-Trading Information model from the Bayesian perspective. We assign a thresholded Gaussian process prior to the instantaneous volatility of the log-price process and adopt a fully Bayesian approach with an efficient Markov chain Monte Carlo algorithm for model inference, based on which a novel Trading Information-based estimator for the integrated volatility is provided. Simulation studies show that the proposed method can effectively recover the true latent log-prices, instantaneous volatility, and integrated volatility with multiple volatility shapes and rounding mechanisms, even under model misspecification. Extensive empirical studies show that the rounding mechanism in the Shanghai A-share market is likely to be random and the trading directions have a greater impact on the rounding results of the asset prices than the true latent log-prices, which is a consistent finding with that in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aït-Sahalia, Y., Jacod, J.: Testing for jumps in a discretely observed process. Ann. Stat. 37(1), 184–222 (2009)

    MathSciNet  Google Scholar 

  • Aït-Sahalia, Y., Mykland, P.A., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18(2), 351–416 (2005)

    Google Scholar 

  • Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3(2), 5–39 (2001)

    Google Scholar 

  • Andersen, T.G., Bollerslev, T.: Intraday periodicity and volatility persistence in financial markets. J. Empir. Finance 4(2–3), 115–158 (1997)

    Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Great realizations. Risk 13, 105–108 (2000)

    Google Scholar 

  • Anshuman, V.R., Kalay, A.: Market making with discrete prices. Rev. Financ. Stud. 11(1), 81–109 (1998)

    Google Scholar 

  • Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76(6), 1481–1536 (2008)

    MathSciNet  Google Scholar 

  • Bernardo, J., Berger, J., Dawid, A., Smith, A.: Regression and classification using Gaussian process priors. Bayesian Stat. 6, 475–501 (1998)

    Google Scholar 

  • Chaker, S.: Volatility and liquidity costs. Technical report, Bank of Canada working paper (2013)

  • Chaker, S.: On high frequency estimation of the frictionless price: the use of observed liquidity variables. J. Econom. 201(1), 127–143 (2017)

    MathSciNet  Google Scholar 

  • Clinet, S., Potiron, Y.: Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book. J. Econom. 209(2), 289–337 (2019)

    MathSciNet  Google Scholar 

  • Clinet, S., Potiron, Y.: Estimation for high-frequency data under parametric market microstructure noise. Ann. Inst. Stat. Math. 73(4), 649–669 (2021)

    MathSciNet  Google Scholar 

  • Clinet, S., Potiron, Y.: Disentangling sources of high frequency market microstructure noise. J. Bus. Econ. Stat. 39(1), 18–39 (2021)

    MathSciNet  Google Scholar 

  • Cont, R., Kukanov, A., Stoikov, S.: The price impact of order book events. J. Financ. Econom. 12(1), 47–88 (2014)

    Google Scholar 

  • Crack, T.F., Ledoit, O.: Robust structure without predictability: the “compass rose’’ pattern of the stock market. J. Finance 51(2), 751–762 (1996)

    Google Scholar 

  • Dimson, E., Hanke, B.: The expected illiquidity premium: evidence from equity index-linked bonds. Rev. Finance 8(1), 19–47 (2004)

    Google Scholar 

  • Dutordoir, V., Salimbeni, H., Hensman, J., Deisenroth, M.: Gaussian process conditional density estimation. Adv. Neural. Inf. Process. Syst. 31, 1–11 (2018)

    Google Scholar 

  • Fan, J., Wang, Y.: Multi-scale jump and volatility analysis for high-frequency financial data. J. Am. Stat. Assoc. 102(480), 1349–1362 (2007)

    MathSciNet  Google Scholar 

  • Foucault, T., Pagano, M., Röell, A.: Market Liquidity: Theory, Evidence, and Policy. Oxford University Press, Oxford (2013)

    Google Scholar 

  • Ghosal, S., Roy, A.: Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Stat. 34(5), 2413–2429 (2006)

    MathSciNet  Google Scholar 

  • Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73(2), 123–214 (2011)

    MathSciNet  Google Scholar 

  • Glosten, L.R., Harris, L.E.: Estimating the components of the bid/ask spread. J. Financ. Econ. 21(1), 123–142 (1988)

    Google Scholar 

  • Gottlieb, G., Kalay, A.: Implications of the discreteness of observed stock prices. J. Finance 40(1), 135–153 (1985)

    Google Scholar 

  • Hagströmer, B.: Bias in the effective bid-ask spread. J. Financ. Econ. 142(1), 314–337 (2021)

    Google Scholar 

  • Hansen, P.R., Large, J., Lunde, A.: Moving average-based estimators of integrated variance. Econom. Rev. 27(1–3), 79–111 (2008)

    MathSciNet  Google Scholar 

  • Harris, L.: Estimation of stock price variances and serial covariances from discrete observations. J. Financ. Quant. Anal. 25(3), 291–306 (1990)

    Google Scholar 

  • Harris, L.E.: Minimum price variations, discrete bid-ask spreads, and quotation sizes. Rev. Financ. Stud. 7(1), 149–178 (1994)

    Google Scholar 

  • Jacod, J., Li, Y., Mykland, P.A., Podolskij, M., Vetter, M.: Microstructure noise in the continuous case: the pre-averaging approach. Stoch. Process. Appl. 119(7), 2249–2276 (2009)

    MathSciNet  Google Scholar 

  • Lederer, A., Umlauft, J., Hirche, S.: Uniform error bounds for Gaussian process regression with application to safe control. Adv. Neural. Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  • Li, Y., Mykland, P.A.: Are volatility estimators robust with respect to modeling assumptions? Bernoulli 13(3), 601–622 (2007)

    MathSciNet  Google Scholar 

  • Li, Y., Mykland, P.A.: Rounding errors and volatility estimation. J. Financ. Econom. 13(2), 478–504 (2015)

    Google Scholar 

  • Li, Y., Xie, S., Zheng, X.: Efficient estimation of integrated volatility incorporating trading information. J. Econom. 195(1), 33–50 (2016)

    MathSciNet  Google Scholar 

  • Li, Y., Zhang, Z., Li, Y.: A unified approach to volatility estimation in the presence of both rounding and random market microstructure noise. J. Econom. 203(2), 187–222 (2018)

    MathSciNet  Google Scholar 

  • Mancini, C.: Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat. 36(2), 270–296 (2009)

    MathSciNet  Google Scholar 

  • Mancini, C., Mattiussi, V., Renò, R.: Spot volatility estimation using delta sequences. Finance Stoch. 19(2), 261–293 (2015)

    MathSciNet  Google Scholar 

  • Podolskij, M., Vetter, M.: Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli 15(3), 634–658 (2009)

    MathSciNet  Google Scholar 

  • Porter, M.E.: What is strategy? Harv. Bus. Rev. 74(6), 61–78 (1996)

    Google Scholar 

  • Robert, C.Y., Rosenbaum, M.: A new approach for the dynamics of ultra-high-frequency data: the model with uncertainty zones. J. Financ. Econom. 9(2), 344–366 (2011)

    Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 60(1), 255–268 (1998)

    MathSciNet  Google Scholar 

  • Roll, R.: A simple implicit measure of the effective bid-ask spread in an efficient market. J. Finance 39(4), 1127–1139 (1984)

    Google Scholar 

  • Song, G., Wang, S., Huang, Q., Tian, Q.: Multimodal similarity Gaussian process latent variable model. IEEE Trans. Image Process. 26(9), 4168–4181 (2017)

    MathSciNet  Google Scholar 

  • Sucarrat, G., Grønneberg, S.: Risk estimation with a time-varying probability of zero returns. J. Financ. Econom. 20(2), 278–309 (2022)

    Google Scholar 

  • Titsias, M., Lawrence, N.D.: Bayesian Gaussian process latent variable model. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Volume 9 of Proceedings of Machine Learning Research, pp. 844–851. PMLR (2010)

  • Wynne, G., Briol, F.-X., Girolami, M.: Convergence guarantees for Gaussian process means with misspecified likelihoods and smoothness. J. Mach. Learn. Res. 22(123), 1–40 (2021)

    MathSciNet  Google Scholar 

  • Xiu, D.: Quasi-maximum likelihood estimation of volatility with high frequency data. J. Econom. 159(1), 235–250 (2010)

    MathSciNet  Google Scholar 

  • Zhang, L.: Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12(6), 1019–1043 (2006)

    MathSciNet  Google Scholar 

  • Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005)

    MathSciNet  Google Scholar 

  • Zu, Y., Boswijk, H.P.: Estimating spot volatility with high-frequency financial data. J. Econom. 181(2), 117–135 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Bo Zhang is supported by National Natural Science Foundation of China (NSFC, 72271232, 71873137) and the MOE project of key research institute of Humanities and Social Sciences (22JJD110001). The research of Ben Wu is supported by National Natural Science Foundation of China (NSFC, 12201628). The authors gratefully acknowledge the support of Public Computing Cloud, Renmin University of China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Wanwan Liang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ben Wu or Bo Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 868 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Wu, B. & Zhang, B. Modeling volatility for high-frequency data with rounding error: a nonparametric Bayesian approach. Stat Comput 34, 23 (2024). https://doi.org/10.1007/s11222-023-10341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-023-10341-0

Keywords

Navigation