Skip to main content
Log in

A Mallows-type model averaging estimator for ridge regression with randomly right censored data

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Instead of picking up a single ridge parameter in ridge regression, this paper considers a frequentist model averaging approach to appropriately combine the set of ridge estimators with different ridge parameters, when the response is randomly right censored. Within this context, we propose a weighted least squares ridge estimation for unknown regression parameter. A new Mallows-type weight choice criterion is then developed to allocate model weights, where the unknown distribution function of the censoring random variable is replaced by the Kaplan–Meier estimator and the covariance matrix of random errors is substituted by its averaging estimator. Under some mild conditions, we show that when the fitting model is misspecified, the resulting model averaging estimator achieves optimality in terms of minimizing the loss function. Whereas, when the fitting model is correctly specified, the model averaging estimator of the regression parameter is root-n consistent. Additionally, for the weight vector which is obtained by minimizing the new criterion, we establish its rate of convergence to the infeasible optimal weight vector. Simulation results show that our method is better than some existing methods. A real dataset is analyzed for illustration as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  • Akaike, H.: Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973)

    MathSciNet  Google Scholar 

  • Ahmad, T., Munir, A., Bhatti, S.H., Aftab, M., Raza, M.A.: Survival analysis of heart failure patients: a case study. PLoS ONE 12, e0181001 (2017)

    Google Scholar 

  • Ando, T., Li, K.C.: A model-averaging approach for high-dimensional regression. J. Am. Stat. Assoc. 109, 254–265 (2014)

    MathSciNet  Google Scholar 

  • Ando, T., Li, K.C.: A weight-relaxed model averaging approach for high-dimensional generalized linear models. Ann. Stat. 45, 2654–2679 (2017)

    MathSciNet  Google Scholar 

  • Bao, Y., He, S., Mei, C.: The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: a comparative study. Comput. Stat. Data Anal. 51, 6488–6497 (2007)

    MathSciNet  Google Scholar 

  • Chen, S., Khan, S.: Semiparametric estimation of a partially linear censored regression model. Economet. Theor. 17, 567–590 (2001)

    MathSciNet  Google Scholar 

  • Chen, J., Li, D., Linton, O., Lu, Z.: Semiparametric ultra-high dimensional model averaging of nonlinear dynamic time series. J. Am. Stat. Assoc. 113, 919–932 (2018)

    MathSciNet  Google Scholar 

  • Chicco, D., Jurman, G.: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform. Decis. Mak. 20, 1–16 (2020)

    Google Scholar 

  • Claeskens, G., Hjort, N.L.: The focused information criterion. J. Am. Stat. Assoc. 98, 900–916 (2003)

    MathSciNet  Google Scholar 

  • Dong, Q., Liu, B., Zhao, H.: Weighted least squares model averaging for accelerated failure time models. Comput. Stat. Data Anal. 184, 107743 (2023)

    MathSciNet  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    MathSciNet  Google Scholar 

  • Emami, H., Arzideh, K.: Robust ridge estimator in censored semiparametric linear models. Commun. Stat. Theory Methods 52, 5989–6007 (2023)

    MathSciNet  Google Scholar 

  • Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    MathSciNet  Google Scholar 

  • Hansen, B.E.: Least squares model averaging. Econometrica 75, 1175–1189 (2007)

    MathSciNet  Google Scholar 

  • Hansen, B.E., Racine, J.: Jackknife model averaging. J. Econom. 167, 38–46 (2012)

    MathSciNet  Google Scholar 

  • He, S., Huang, X.: Central limit theorem of linear regression model under right censorship. Sci. China Ser. A 46, 600–610 (2003)

    MathSciNet  Google Scholar 

  • Hu, G., Cheng, W., Zeng, J., Guan, R.: Optimal model averaging for semiparametric partially linear models with measurement errors. J. Stat. Plan. Inference 230, 106101 (2024)

    MathSciNet  Google Scholar 

  • Hoerl, A., Kennard, R.: Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12, 69–82 (1970)

    Google Scholar 

  • Koul, H., Susarla, V., Van Ryzin, J.: Regression analysis with randomly right-censored data. Ann. Stat. 9, 1276–1288 (1981)

    MathSciNet  Google Scholar 

  • Li, K.C.: Asymptotic optimality for \(C_p\), \(C_L\), cross-validation and generalized cross-validation: discrete index set. Ann. Stat. 15, 958–975 (1987)

    Google Scholar 

  • Li, C., Li, Q., Racine, J., Zhang, D.: Optimal model averaging of varying coefficient models. Stat. Sin. 28, 2795–2809 (2018)

    MathSciNet  Google Scholar 

  • Li, J., Lv, J., Wan, A.T.K., Liao, J.: Adaboost semiparametric model averaging prediction for multiple categories. J. Am. Stat. Assoc. 117, 495–509 (2022)

    MathSciNet  Google Scholar 

  • Liang, Z., Chen, X., Zhou, Y.: Mallows model averaging estimation for linear regression model with right censored data. Acta Math. Appl. Sin. Engl. Ser. 38, 5–23 (2022)

    MathSciNet  Google Scholar 

  • Liao, J., Zou, G.: Corrected Mallows criterion for model averaging. Comput. Stat. Data Anal. 144, 106902 (2020)

    MathSciNet  Google Scholar 

  • Liao, J., Zong, X., Zhang, X., Zou, G.: Model averaging based on leave-subject-out cross-validation for vector autoregressions. J. Econom. 209, 35–60 (2019a)

    MathSciNet  Google Scholar 

  • Liao, J., Zou, G., Gao, Y.: Spatial Mallows model averaging for geostatistical models. Canad. J. Stat. 47, 336–351 (2019b)

    MathSciNet  Google Scholar 

  • Liu, Q., Okui, R., Yoshimura, A.: Generalized least squares model averaging. Economet. Rev. 35, 1692–1752 (2016)

    MathSciNet  Google Scholar 

  • Liu, Y., Zou, J., Zhao, S., Yang, Q.: Model averaging estimation for varying-coefficient single-index models. J. Syst. Sci. Complex. 35, 264–282 (2022)

    MathSciNet  Google Scholar 

  • Longford, N.T.: Editorial: Model selection and efficiency-is ‘which model ...?’ the right question? J. R. Stat. Soc. Ser. A 168, 469–472 (2005)

    MathSciNet  Google Scholar 

  • Lu, X., Su, L.: Jackknife model averaging for quantile regressions. J. Econom. 188, 40–58 (2015)

    MathSciNet  Google Scholar 

  • Mallows, C.L.: Some comments on \(C_p\). Technometrics 15, 661–675 (1973)

    Google Scholar 

  • Peng, J., Yang, Y.: On improvability of model selection by model averaging. J. Econom. 229, 246–262 (2022)

    MathSciNet  Google Scholar 

  • Racine, J., Li, Q., Yu, D., Zheng, L.: Optimal model averaging of mixed-data kernel-weighted spline regressions. J. Bus. Econ. Stat. 41, 1251–1261 (2023)

    MathSciNet  Google Scholar 

  • Schomaker, M.: Shrinkage averaging estimation. Stat. Pap. 53, 1015–1034 (2012)

    MathSciNet  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    MathSciNet  Google Scholar 

  • Seng, L., Li, J.: Structural equation model averaging: methodology and application. J. Bus. Econ. Stat. 40, 815–828 (2022)

    MathSciNet  Google Scholar 

  • Stone, M.: Cross-validation choice and assessment of statistical predictions. J. Roy. Stat. Soc. B 36, 111–147 (1974)

    Google Scholar 

  • Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivar. Anal. 45, 89–103 (1993)

    MathSciNet  Google Scholar 

  • Sun, Y., Hong, Y., Wang, S., Zhang, X.: Penalized time-varying model averaging. J. Econom. 235, 1355–1377 (2023)

    MathSciNet  Google Scholar 

  • Wan, A.T.K., Zhang, X., Zou, G.: Least squares model averaging by Mallows criterion. J. Econom. 156, 277–283 (2010)

    MathSciNet  Google Scholar 

  • Wang, S., Nan, B., Zhu, J., Beer, D.G.: Doubly penalized Buckley-James method for survival data with high-dimensional covariates. Biometrics 64, 132–140 (2008)

    MathSciNet  Google Scholar 

  • Wang, M., Zhang, X., Wan, A.T.K., You, K., Zou, G.: Jackknife model averaging for high-dimensional quantile regression. Biometrics 79, 178–189 (2023)

    MathSciNet  Google Scholar 

  • Wei, Y., Wang, Q., Liu, W.: Model averaging for linear models with responses missing at random. Ann. Inst. Stat. Math. 73, 535–553 (2021)

    MathSciNet  Google Scholar 

  • Xia, X.: Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing. Stat. Pap. 62, 2885–2905 (2021)

    MathSciNet  Google Scholar 

  • Xie, J., Yan, X., Tang, N.: A model-averaging method for high-dimensional regression with missing responses at random. Stat. Sin. 31, 1005–1026 (2021)

    MathSciNet  Google Scholar 

  • Yan, X., Wang, H., Wang, W., Xie, J., Ren, Y., Wang, X.: Optimal model averaging forecasting in high-dimensional survival analysis. Int. J. Forecast. 37, 1147–1155 (2021)

    Google Scholar 

  • Yuan, Z., Yang, Y.: Combining linear regression models: when and how? J. Am. Stat. Assoc. 100, 1202–1214 (2005)

    MathSciNet  Google Scholar 

  • Yuan, C., Fang, F., Li, J.: Model averaging for generalized linear models in diverging model spaces with effective model size. Econom. Rev. 43, 71–96 (2024)

    MathSciNet  Google Scholar 

  • Yu, D., Lian, H., Sun, Y., Zhang, X., Hong, Y.: Post-averaging inference for optimal model averaging estimator in generalized linear models. Econom. Rev. 43, 98–122 (2024)

    MathSciNet  Google Scholar 

  • Zeng, D., Mao, L., Lin, D.Y.: Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103, 253–271 (2016)

    MathSciNet  Google Scholar 

  • Zhang, X., Liu, C.A.: Inference after model averaging in linear regression models. Econom. Theor. 35, 816–841 (2019)

    MathSciNet  Google Scholar 

  • Zhang, X., Liu, C.A.: Model averaging prediction by K-fold cross-validation. J. Econom. 235, 280–301 (2023)

    MathSciNet  Google Scholar 

  • Zhang, X., Wang, W.: Optimal model averaging estimation for partially linear models. Stat. Sin. 29, 693–718 (2019)

    MathSciNet  Google Scholar 

  • Zhang, X., Zhang, X.: Optimal model averaging based on forward-validation. J. Econom. 237, 105295 (2023)

    MathSciNet  Google Scholar 

  • Zhang, X., Wan, A.T.K., Zou, G.: Model averaging by jackknife criterion in models with dependent data. J. Econom. 174, 82–94 (2013)

    MathSciNet  Google Scholar 

  • Zhang, X., Yu, D., Zou, G., Liang, H.: Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models. J. Am. Stat. Assoc. 111, 1775–1790 (2016)

    MathSciNet  Google Scholar 

  • Zhang, X., Chiou, J.M., Ma, Y.: Functional prediction through averaging estimated functional linear regression models. Biometrika 105, 945–962 (2018)

    MathSciNet  Google Scholar 

  • Zhang, X., Ma, Y., Carroll, R.J.: MALMEM: model averaging in linear measurement error models. J. Roy. Stat. Soc. B 81, 763–779 (2019)

    MathSciNet  Google Scholar 

  • Zhang, X., Zou, G., Liang, H., Carroll, R.J.: Parsimonious model averaging with a diverging number of parameters. J. Am. Stat. Assoc. 115, 972–984 (2020)

    MathSciNet  Google Scholar 

  • Zhao, S., Zhang, X., Gao, Y.: Model averaging with averaging covariance matrix. Econ. Lett. 145, 214–217 (2016)

    MathSciNet  Google Scholar 

  • Zhao, H., Wu, Q., Li, G., Sun, J.: Simultaneous estimation and variable selection for interval-censored data with broken adaptive ridge regression. J. Am. Stat. Assoc. 115, 204–216 (2020a)

    MathSciNet  Google Scholar 

  • Zhao, S., Liao, J., Yu, D.: Model averaging estimator in ridge regression and its large sample properties. Stat. Pap. 61, 1719–1739 (2020b)

    MathSciNet  Google Scholar 

  • Zhu, R., Wan, A.T.K., Zhang, X., Zou, G.: A Mallows-type model averaging estimator for the varying-coefficient partially linear model. J. Am. Stat. Assoc. 114, 882–892 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and editors for their careful reading and constructive comments. This work was supported by the Important Natural Science Foundation of Colleges and Universities of Anhui Province (No.KJ2021A0930, No.KJ2021A0929) and Research Project of Hefei Normal University (No.2023XTTDZD06, No.2023XTQTZD28).

Author information

Authors and Affiliations

Authors

Contributions

Zeng and Cheng wrote the main manuscript text and Hu prepared all the figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guozhi Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Hu, G. & Cheng, W. A Mallows-type model averaging estimator for ridge regression with randomly right censored data. Stat Comput 34, 159 (2024). https://doi.org/10.1007/s11222-024-10472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-024-10472-y

Keywords

Mathematics Subject Classification