Abstract
Stochastic volatility models (SVMs) are widely used in finance and econometrics for analyzing and interpreting volatility. Real financial data are often observed to have heavy tails, which violate a Gaussian assumption and may be better modeled using the stable distribution. However, the intractable density of the stable distribution hinders the use of common computational methods such as Markov chain Monte Carlo (MCMC) for parameter inference of SVMs. In this paper, we propose a new particle Gibbs sampler as a strategy to handle SVMs with intractable likelihoods in the approximate Bayesian computation (ABC) setting. The proposed sampler incorporates a conditional auxiliary particle filter, which can help mitigate the weight degeneracy often encountered when using ABC. Simulation studies demonstrate the efficacy of our sampler for inferring SVM parameters when compared to existing particle Gibbs samplers based on the conditional bootstrap filter, and for inferring both SVM and stable distribution parameters when compared to existing particle MCMC samplers. As a real data application, we apply the proposed sampler for fitting an SVM to S&P 500 Index time-series data during the 2008–2009 financial crisis.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)
Beaumont, M.A.: Approximate Bayesian computation. Ann. Rev. Stat. Appl. 6, 379–403 (2019)
Carvalho, C.M., Johannes, M.S., Lopes, H.F., Polson, N.G.: Particle learning and smoothing. Stat. Sci. 25(1), 88–106 (2010)
Chambers, J.M., Mallows, C.L., Stuck, B.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)
Chopin, N., Singh, S.S.: On particle Gibbs sampling. Bernoulli 21(3), 1855 (2015)
Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)
Drovandi, C.C., Pettitt, A.N.: Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput. Stat. Data Anal. 55(9), 2541–2556 (2011)
Engle, R.F., Patton, A.J.: What good is a volatility model? Quant. Finance 1, 237–245 (2001)
Fridman, M., Harris, L.: A maximum likelihood approach for non-Gaussian stochastic volatility models. J. Bus. Econ. Stat. 16(3), 284–291 (1998)
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC Press, Boca Raton (2014)
Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F (Radar Signal Process.) 140(2), 107–113 (1993)
Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli, 223–242 (2001)
Hou, Z., Wong, S.W.: Estimating Boltzmann averages for protein structural quantities using sequential Monte Carlo. Stat. Sin. 34, 1263–1280 (2024)
Johansen, A.M., Doucet, A.: A note on auxiliary particle filters. Stat. Probab. Lett. 78(12), 1498–1504 (2008)
Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994)
Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 122(1), 185–212 (2004)
Kanter, M.: Stable densities under change of scale and total variation inequalities. Ann. Probab. 3(4), 697–707 (1975)
Kitagawa, G.: A self-organizing state-space mode. J. Am. Stat. Assoc. 93(443), 1203–1215 (1998)
Kabašinskas, A., Rachev, S., Sakalauskas, L., Sun, W., Belovas, I.: Alpha-stable paradigm in financial markets. J. Comput. Anal. Appl. 11(4), 641–668 (2009)
Kim, S., Shephard, N., Chib, S.: Stochastic volatility: likelihood inference and comparison with arch models. Rev. Econ. Stud. 65(3), 361–393 (1998)
Lombardi, M.J., Calzolari, G.: Indirect estimation of \(\alpha \)-stable stochastic volatility models. Comput. Stat. Data Anal. 53(6), 2298–2308 (2009)
Lin, M., Chen, R., Liu, J.S.: Lookahead strategies for sequential Monte Carlo. Stat. Sci. 28(1), 69–94 (2013)
Lowe, T.E., Golightly, A., Sherlock, C.: Accelerating inference for stochastic kinetic models. Comput. Stat. Data Anal. 185, 107760 (2023)
Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)
Lindsten, F., Jordan, M.I., Schon, T.B.: Particle Gibbs with ancestor sampling. J. Mach. Learn. Res. 15(1), 2145–2184 (2014)
Lemke, T., Riabiz, M., Godsill, S.J.: Fully Bayesian inference for \(\alpha \)-stable distributions using a Poisson series representation. Dig. Signal Process. 47, 96–115 (2015)
Liu, J., West, M.: Combined Parameter and State Estimation in Simulation-Based Filtering. In: Doucet, A., Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 197–223. Springer, New York (2001)
Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36(4), 394–419 (1963)
McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat. Simul. Comput. 15(4), 1109–1136 (1986)
Mittnik, S., Doganoglu, T., Chenyao, D.: Computing the probability density function of the stable paretian distribution. Math. Comput. Model. 29(10–12), 235–240 (1999)
Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)
Nakagome, S., Fukumizu, K., Mano, S.: Kernel approximate Bayesian computation in population genetic inferences. Stat. Appl. Genet. Mol. Biol. 12(6), 667–678 (2013)
Nolan, J.P.: Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Models 13(4), 759–774 (1997)
Nolan, J.P.: An algorithm for evaluating stable densities in Zolotarev’s (M) parameterization. Math. Comput. Model. 29(10–12), 229–233 (1999)
Nolan, J.P.: Univariate Stable Distributions. Springer, Switzerland (2020)
Owen, J., Wilkinson, D.J., Gillespie, C.S.: Scalable inference for Markov processes with intractable likelihoods. Stat. Comput. 25, 145–156 (2015)
Peters, G.W., Fan, Y., Sisson, S.A.: On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Stat. Comput. 22, 1209–1222 (2012)
Park, M., Jitkrittum, W., Sejdinovic, D.: K2-ABC: approximate Bayesian computation with kernel embeddings. In: Artificial Intelligence and Statistics, pp. 398–407. PMLR (2016)
Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)
Rayner, G.D., MacGillivray, H.L.: Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. Stat. Comput. 12(1), 57–75 (2002)
Svensson, A., Schön, T.B., Kok, M.: Nonlinear state space smoothing using the conditional particle filter. IFAC-PapersOnLine 48(28), 975–980 (2015)
Storvik, G.: Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50(2), 281–289 (2002)
Taylor, S.J.: Modelling Financial Time Series. World Scientific, Singapore (2008)
Vankov, E.R., Guindani, M., Ensor, K.B.: Filtering and estimation for a class of stochastic volatility models with intractable likelihoods. Bayesian Anal. 14(1), 29–52 (2019)
Wilkinson, R.D.: Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12(2), 129–141 (2013)
Wuertz, D., Maechler, M., Rmetrics core team members.: Stabledist: Stable Distribution Functions. R package version 0.7-1. https://CRAN.R-project.org/package=stabledist (2016)
Yang, B., Stroud, J.R., Huerta, G.: Sequential Monte Carlo smoothing with parameter estimation. Bayesian Anal. 13(4), 1137–1161 (2018)
Acknowledgements
This work was partially supported by Discovery Grant RGPIN-2019-04771 from the Natural Sciences and Engineering Research Council of Canada.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hou, Z., Wong, S.W.K. Particle Gibbs for likelihood-free inference of stochastic volatility models. Stat Comput 35, 34 (2025). https://doi.org/10.1007/s11222-025-10571-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11222-025-10571-4