Skip to main content

Advertisement

Log in

Particle Gibbs for likelihood-free inference of stochastic volatility models

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Stochastic volatility models (SVMs) are widely used in finance and econometrics for analyzing and interpreting volatility. Real financial data are often observed to have heavy tails, which violate a Gaussian assumption and may be better modeled using the stable distribution. However, the intractable density of the stable distribution hinders the use of common computational methods such as Markov chain Monte Carlo (MCMC) for parameter inference of SVMs. In this paper, we propose a new particle Gibbs sampler as a strategy to handle SVMs with intractable likelihoods in the approximate Bayesian computation (ABC) setting. The proposed sampler incorporates a conditional auxiliary particle filter, which can help mitigate the weight degeneracy often encountered when using ABC. Simulation studies demonstrate the efficacy of our sampler for inferring SVM parameters when compared to existing particle Gibbs samplers based on the conditional bootstrap filter, and for inferring both SVM and stable distribution parameters when compared to existing particle MCMC samplers. As a real data application, we apply the proposed sampler for fitting an SVM to S&P 500 Index time-series data during the 2008–2009 financial crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)

    MathSciNet  MATH  Google Scholar 

  • Beaumont, M.A.: Approximate Bayesian computation. Ann. Rev. Stat. Appl. 6, 379–403 (2019)

    MathSciNet  MATH  Google Scholar 

  • Carvalho, C.M., Johannes, M.S., Lopes, H.F., Polson, N.G.: Particle learning and smoothing. Stat. Sci. 25(1), 88–106 (2010)

    MathSciNet  MATH  Google Scholar 

  • Chambers, J.M., Mallows, C.L., Stuck, B.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)

    MathSciNet  MATH  Google Scholar 

  • Chopin, N., Singh, S.S.: On particle Gibbs sampling. Bernoulli 21(3), 1855 (2015)

    MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)

    MathSciNet  MATH  Google Scholar 

  • Drovandi, C.C., Pettitt, A.N.: Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput. Stat. Data Anal. 55(9), 2541–2556 (2011)

    MathSciNet  MATH  Google Scholar 

  • Engle, R.F., Patton, A.J.: What good is a volatility model? Quant. Finance 1, 237–245 (2001)

    MATH  Google Scholar 

  • Fridman, M., Harris, L.: A maximum likelihood approach for non-Gaussian stochastic volatility models. J. Bus. Econ. Stat. 16(3), 284–291 (1998)

    MATH  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  • Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F (Radar Signal Process.) 140(2), 107–113 (1993)

    MATH  Google Scholar 

  • Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli, 223–242 (2001)

  • Hou, Z., Wong, S.W.: Estimating Boltzmann averages for protein structural quantities using sequential Monte Carlo. Stat. Sin. 34, 1263–1280 (2024)

    MathSciNet  MATH  Google Scholar 

  • Johansen, A.M., Doucet, A.: A note on auxiliary particle filters. Stat. Probab. Lett. 78(12), 1498–1504 (2008)

    MathSciNet  MATH  Google Scholar 

  • Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 12(4), 371–389 (1994)

    MATH  Google Scholar 

  • Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 122(1), 185–212 (2004)

    MathSciNet  MATH  Google Scholar 

  • Kanter, M.: Stable densities under change of scale and total variation inequalities. Ann. Probab. 3(4), 697–707 (1975)

    MathSciNet  MATH  Google Scholar 

  • Kitagawa, G.: A self-organizing state-space mode. J. Am. Stat. Assoc. 93(443), 1203–1215 (1998)

    MATH  Google Scholar 

  • Kabašinskas, A., Rachev, S., Sakalauskas, L., Sun, W., Belovas, I.: Alpha-stable paradigm in financial markets. J. Comput. Anal. Appl. 11(4), 641–668 (2009)

    MathSciNet  MATH  Google Scholar 

  • Kim, S., Shephard, N., Chib, S.: Stochastic volatility: likelihood inference and comparison with arch models. Rev. Econ. Stud. 65(3), 361–393 (1998)

    MATH  Google Scholar 

  • Lombardi, M.J., Calzolari, G.: Indirect estimation of \(\alpha \)-stable stochastic volatility models. Comput. Stat. Data Anal. 53(6), 2298–2308 (2009)

    MathSciNet  MATH  Google Scholar 

  • Lin, M., Chen, R., Liu, J.S.: Lookahead strategies for sequential Monte Carlo. Stat. Sci. 28(1), 69–94 (2013)

    MathSciNet  MATH  Google Scholar 

  • Lowe, T.E., Golightly, A., Sherlock, C.: Accelerating inference for stochastic kinetic models. Comput. Stat. Data Anal. 185, 107760 (2023)

    MathSciNet  MATH  Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  • Lindsten, F., Jordan, M.I., Schon, T.B.: Particle Gibbs with ancestor sampling. J. Mach. Learn. Res. 15(1), 2145–2184 (2014)

    MathSciNet  MATH  Google Scholar 

  • Lemke, T., Riabiz, M., Godsill, S.J.: Fully Bayesian inference for \(\alpha \)-stable distributions using a Poisson series representation. Dig. Signal Process. 47, 96–115 (2015)

    MathSciNet  MATH  Google Scholar 

  • Liu, J., West, M.: Combined Parameter and State Estimation in Simulation-Based Filtering. In: Doucet, A., Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 197–223. Springer, New York (2001)

  • Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36(4), 394–419 (1963)

    MATH  Google Scholar 

  • McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat. Simul. Comput. 15(4), 1109–1136 (1986)

    MathSciNet  MATH  Google Scholar 

  • Mittnik, S., Doganoglu, T., Chenyao, D.: Computing the probability density function of the stable paretian distribution. Math. Comput. Model. 29(10–12), 235–240 (1999)

    MATH  Google Scholar 

  • Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

    MathSciNet  MATH  Google Scholar 

  • Nakagome, S., Fukumizu, K., Mano, S.: Kernel approximate Bayesian computation in population genetic inferences. Stat. Appl. Genet. Mol. Biol. 12(6), 667–678 (2013)

    MathSciNet  MATH  Google Scholar 

  • Nolan, J.P.: Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Models 13(4), 759–774 (1997)

    MathSciNet  MATH  Google Scholar 

  • Nolan, J.P.: An algorithm for evaluating stable densities in Zolotarev’s (M) parameterization. Math. Comput. Model. 29(10–12), 229–233 (1999)

    MATH  Google Scholar 

  • Nolan, J.P.: Univariate Stable Distributions. Springer, Switzerland (2020)

    MATH  Google Scholar 

  • Owen, J., Wilkinson, D.J., Gillespie, C.S.: Scalable inference for Markov processes with intractable likelihoods. Stat. Comput. 25, 145–156 (2015)

    MathSciNet  MATH  Google Scholar 

  • Peters, G.W., Fan, Y., Sisson, S.A.: On sequential Monte Carlo, partial rejection control and approximate Bayesian computation. Stat. Comput. 22, 1209–1222 (2012)

    MathSciNet  MATH  Google Scholar 

  • Park, M., Jitkrittum, W., Sejdinovic, D.: K2-ABC: approximate Bayesian computation with kernel embeddings. In: Artificial Intelligence and Statistics, pp. 398–407. PMLR (2016)

  • Pitt, M.K., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

    MathSciNet  MATH  Google Scholar 

  • Rayner, G.D., MacGillivray, H.L.: Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. Stat. Comput. 12(1), 57–75 (2002)

    MathSciNet  MATH  Google Scholar 

  • Svensson, A., Schön, T.B., Kok, M.: Nonlinear state space smoothing using the conditional particle filter. IFAC-PapersOnLine 48(28), 975–980 (2015)

  • Storvik, G.: Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50(2), 281–289 (2002)

    MathSciNet  MATH  Google Scholar 

  • Taylor, S.J.: Modelling Financial Time Series. World Scientific, Singapore (2008)

  • Vankov, E.R., Guindani, M., Ensor, K.B.: Filtering and estimation for a class of stochastic volatility models with intractable likelihoods. Bayesian Anal. 14(1), 29–52 (2019)

    MathSciNet  MATH  Google Scholar 

  • Wilkinson, R.D.: Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12(2), 129–141 (2013)

    MathSciNet  MATH  Google Scholar 

  • Wuertz, D., Maechler, M., Rmetrics core team members.: Stabledist: Stable Distribution Functions. R package version 0.7-1. https://CRAN.R-project.org/package=stabledist (2016)

  • Yang, B., Stroud, J.R., Huerta, G.: Sequential Monte Carlo smoothing with parameter estimation. Bayesian Anal. 13(4), 1137–1161 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Discovery Grant RGPIN-2019-04771 from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel W. K. Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 20 KB)

Supplementary file 2 (pdf 194 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Wong, S.W.K. Particle Gibbs for likelihood-free inference of stochastic volatility models. Stat Comput 35, 34 (2025). https://doi.org/10.1007/s11222-025-10571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-025-10571-4

Keywords