Abstract
The logic RM and its basic fragments (always with implication) are considered here as entire consequence relations, rather than as sets of theorems. A new observation made here is that the disjunction of RM is definable in terms of its other positive propositional connectives, unlike that of R. The basic fragments of RM therefore fall naturally into two classes, according to whether disjunction is or is not definable. In the equivalent quasivariety semantics of these fragments, which consist of subreducts of Sugihara algebras, this corresponds to a distinction between strong and weak congruence properties. The distinction is explored here. A result of Avron is used to provide a local deduction-detachment theorem for the fragments without disjunction. Together with results of Sobociński, Parks and Meyer (which concern theorems only), this leads to axiomatizations of these entire fragments — not merely their theorems. These axiomatizations then form the basis of a proof that all of the basic fragments of RM with implication are finitely axiomatized consequence relations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Anderson, A. R., and N. D. Belnap, Jnr., ‘Enthymemes’, The Journal of Philosophy 58 (1961), 713–723.
Anderson, A. R., and N. D. Belnap, Jnr., Entailment: The Logic of Relevance and Necessity, Volume 1, Princeton University Press, 1975.
Anderson, A. R., N. D. Belnap, Jnr., and J. M. Dunn, Entailment: The Logic of Relevance and Necessity, Volume 2, Princeton University Press, 1992.
Avron, A., ‘Relevant entailment—semantics and the formal systems’, The Journal of Symbolic Logic 49 (1984), 334–432.
Avron, A., ‘On an implication connective of RM’, Notre Dame Journal of Formal Logic 27 (1986), 201–209.
Avron, A., ‘A constructive analysis of RM’, The Journal of Symbolic Logic 52 (1987), 939–951.
Avron, A., ‘The semantics and proof theory of linear logic’, Theoretical Computer Science 57 (1988), 161–184.
Avron, A., ‘Relevance and paraconsistency—a new approach’, The Journal of Symbolic Logic 55 (1990), 707–732.
Avron, A., ‘Relevance and paraconsistency—a new approach. Part II: The formal systems’, Notre Dame Journal of Formal Logic 31 (1990), 169–202.
Avron, A., ‘Axiomatic systems, deduction and implication’, Journal of Logic and Computation 2 (1992), 51–98.
Avron, A., ‘Whither relevance logic?’, Journal of Philosophical Logic 21 (1992), 243–281.
Avron, A., ‘Multiplicative conjunction as an extensional conjunction’, Logic Journal of the IGPL 5 (1997), 181–208.
Avron, A., ‘Implicational F-structures and implicational relevance logics’, The Journal of Symbolic Logic 65 (2000), 788–802.
Berman, J., and W. J. Blok, ‘The Fraser-Horn and apple properties’, Transactions of the American Mathematical Society 302 (1987), 427–465.
Blok, W. J., and W. Dziobiak, ‘On the lattice of quasivarieties of Sugihara algebras’, Studia Logica 45 (1986), 275–280.
Blok, W. J., P. Köhler, and D. Pigozzi, ‘The algebraization of logic’, unpublished manuscript, 1983.
Blok, W. J., and D. Pigozzi, ‘On the structure of varieties with equationally definable principal congruences I’, Algebra Universalis 15 (1982), 195–227.
Blok, W. J., and D. Pigozzi, ‘A finite basis theorem for quasivarieties’, Algebra Universalis 22 (1986), 1–13.
Blok, W. J., and D. Pigozzi, ‘Protoalgebraic logics’, Studia Logica 45 (1986), 337–369.
Blok, W. J., and D. Pigozzi, ‘Local deduction theorems in algebraic logic’, in H. Andreka, J. D. Monk and I. Nemeti, (eds.), Algebraic Logic, Colloquia Mathematica Societatis János Bolyai 54 Algebraic Logic, Budapest (Hungary), 1988, pp. 75–109.
Blok, W. J., and D. Pigozzi, ‘Algebraizable Logics’, Memoirs of the American Mathematical Society, Number 396, Amer. Math. Soc., Providence, 1989.
Blok, W. J., and D. Pigozzi, ‘Algebraic semantics for universal Horn logic without equality’, in J.D.H. Smith and A. Romanowska, (eds.), Universal Algebra and Quasigroup Theory, Heldermann Verlag, Berlin, 1992, pp. 1–56.
Blok W. J., and D. Pigozzi, ‘Abstract algebraic logic and the deduction theorem’, The Bulletin of Symbolic Logic, to appear.
Blok, W. J., and J. G. Raftery, ‘Ideals in quasivarieties of algebras’, in X. Caicedo and C. H. Montenegro, (eds.), Models, Algebras and Proofs, Lecture Notes in Pure and Applied Mathematics, Vol. 203, Marcel Dekker, New York, 1999, pp. 167–186.
Blok, W. J., and J. G. Raftery, ‘On assertional logic’, manuscript, 1998.
Brady, R. T., ‘Rules in relevant logic-I: Semantic classification’, Journal of Philosophical Logic 23 (1994), 111–137.
Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1981.
Czelakowski, J., ‘Algebraic aspects of deduction theorems’, Studia Logica 44 (1985), 369–387.
Czelakowski, J., ‘Local deduction theorems’, Studia Logica 45 (1986), 377–391.
Czelakowski, J., Protoalgebraic Logics, Kluwer, Dordrecht, 2001.
Czelakowski, J., and W. Dziobiak, ‘Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class’, Algebra Universalis 27 (1990), 128–149.
Czelakowski, J., and W. Dziobiak, ‘The parameterized local deduction theorem for quasivarieties of algebras and its application’, Algebra Universalis 25 (1996), 373–419.
Czelakowski, J., and W. Dziobiak, ‘Deduction theorems within RM and its extensions’, The Journal of Symbolic Logic 64 (1999), 279–290.
Dummett, M., ‘A propositional calculus with a denumerable matrix’, The Journal of Symbolic Logic 24 (1959), 97–106.
Dunn, J.M., ‘Algebraic completeness results for R-mingle and its extensions’, The Journal of Symbolic Logic 35 (1970), 1–13.
Dunn, J.M., ‘Relevance logic and entailment’, in D. Gabbay and F. Guenthner, (eds.), Handbook of Philosophical Logic, Volume III, Reidel, Dordrecht, 1986, pp. 117–226.
Dunn J. M., ‘Partial gaggles applied to logics with restricted structural rules’, in P. Schroeder-Heister and K. Došen, (eds.), Substructural Logics, Clarendon Press, Oxford, 1993, pp. 63–108.
Dunn, J. M., and R. K. Meyer, ‘Algebraic completeness results for Dummett’s LC and its extensions’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 17 (1971), 225–230.
Dunn, J. M., and G. Restall, ‘Relevance logic and entailment’, in D. Gabbay, (ed.), Handbook of Philosophical Logic, Volume 8, 2nd edn., Kluwer, Dordrecht, 2001, pp. 1–128 (revision of [36]).
Dziobiak, W., ‘Finitely generated congruence distributive quasivarieties of algebras’, Fundamenta Mathematica 133 (1989), 47–57.
Dziobiak, W., ‘Quasivarieties of Sugihara semilattices with involution’, Algebra and Logic 39 (2000), 26–36.
Font, J.M., and G. Rodríguez, ‘Note on algebraic models for relevance logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36 (1990), 535–540.
Font, J.M., and G. Rodríguez Pérez, ‘A note on Sugihara algebras’, Publicacions Mathemátiques 36 (1992), 591–599.
Freese, R., and E. W. Kiss, ‘Algebra Calculator Program’, available at http://www.math.hawaii.edu/~ralph/software/uaprog or http://www.cs.elte.hu/~ewkiss/software/uaprog.
Freese, R., and J. B. Nation, ‘Congruence lattices of semilattices’, Pacific Journal of Mathematics 49 (1973), 51–58.
Gabbay, D. M., A general theory of structured consequence relations, in P. Schroeder-Heister and K. Došen, (eds.), Substructural Logics, Clarendon Press, Oxford, 1993, pp. 109–151.
Gabbay, D. M., (ed.), What is a Logical System? Clarendon Press, Oxford, 1994.
Galatos, N., and J. G. Raftery, ‘Adding Involution to Residuated Structures’, Studia Logica 77 (2004), 181–207.
Gorbunov, V. A., Algebraic Theory of Quasivarieties, Consultants Bureau, New York, 1998.
Hobby, D., and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics 76 American Mathematical Society (Providence, RI), 1988.
Hsieh, A., Personal communication, 2002.
JÓnsson B., ‘On finitely based varieties of algebras’, Colloquium Mathematicum 42 (1979), 255–2
Kearnes, K., ‘Type preservation in locally finite varieties with the CEP’, Canadian Journal of Mathematics 43 (1991), 748–769.
Kearnes, K., and R. McKenzie, ‘Commutator theory for relatively modular quasivarieties’, Transactions of the American Mathematical Society 331 (1992), 465–502.
Kearnes, K., and A. Szendrei, ‘The relationship between two commutators’, International Journal of Algebra and Computation 8 (1998), 497–531.
Kearnes, K., and R. Willard, ‘Residually finite, congruence meet-semidistributive varieties of finite type have a finite residual bound’, Proceedings of the American Mathematical Society 127 (1999), 2841–2850.
Köhler, P., and D. Pigozzi, ‘Varieties with equationally definable principal congruences’, Algebra Universalis 11 (1980), 213–219.
Lipparini, P., ‘n-Permutable varieties satisfy nontrivial congruence identities’, Algebra Universalis 33 (1995), 159–168.
Lipparini, P., ‘A characterization of varieties with a difference term, II: Neutral = meet semidistributive’, Canadian Mathematical Bulletin 41 (1998), 1318–327.
Łoś, J., and R. Suszko, ‘Remarks on sentential logics’, Proc. Kon. Nederl. Akad. van Wetenschappen, Series A 61 (1958), 177–183.
Mares, E. D., and R. K. Meyer, ‘Relevant logics’, in L. Goble, (ed.), The Blackwell Guide to Philosophical Logic, Blackwell, Oxford, 2001, pp. 280–308.
Méndez, J. M., ‘The compatibility of relevance and mingle’, Journal of Philosophical Logic 17 (1988), 279–297.
Meyer, R. K., ‘A characteristic matrix for RM’, unpublished manuscript, 1967.
Meyer, R. K., ‘R-mingle and relevant disjunction’, The Journal of Symbolic Logic 36 (1971), 366.
Meyer, R. K., ‘Conservative extension in relevant implication’, Studia Logica 31 (1972), 39–46.
Meyer, R. K., ‘On conserving positive logics’, Notre Dame J. Formal Logic 14 (1973), 224–236.
Meyer, R. K., ‘Intuitionism, entailment, negation’, in H. Leblanc, (ed.), Truth, Syntax and Modality North Holland, Amsterdam, 1973, pp. 168–198.
Meyer, R. K., ‘Improved decision procedures for pure relevant logic’, in C. A. Anderson and M. Zeleny, eds.), Logic, Meaning and Computation, Kluwer, Dordrecht, 2001, pp. 191–217.
Meyer, R. K., and J. M. Dunn, ‘E, R and λ’, The Journal of Symbolic Logic 34 (1969), 460–474.
Meyer, R. K., J. M. Dunn, and H. Leblanc, ‘Completeness of relevant quantification theories’, Notre Dame Journal of Formal Logic 15 (1974), 97–121.
Meyer, R. K., and R. Z. Parks, ‘Independent axioms for the implicational fragment of Sobociński’s three-valued logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 18 (1972), 291–295.
Meyer, R. K., and R. Routley, ‘Algebraic analysis of entailment, I’, Logique et Analyse N.S. 15 (1972), 407–428.
Myhill, J., ‘On the interpretation of the sign ‘⊂’’, The Journal of Symbolic Logic 18 (1953), 60–62.
Nurakunov, A. M., ‘Quasivarieties of algebras with definable principal congruences’ (English translation), Algebra and Logic 29 (1990), 26–34.
Ohnishi, M., and K. Matsumoto, ‘A system for strict implication’, Proceedings of the Symposium on the Foundations of Mathematics, Katadu, Japan, 1962, pp. 98–108.
Parks, R. Z., ‘A note on R-mingle and Sobociński’s three-valued logic’, Notre Dame Journal of Formal Logic 13 (1972), 227–228.
Raftery, J. G., and T. Sturm, ‘Tolerance numbers, congruence n-permutability and BCK-algebras’, Czechoslovak Mathematical Journal 42(117) (1992), 727–740.
Rose, A., ‘An alternative formalization of Sobociński’s three-valued implicational propositional calculus’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12 (1956), 166–172.
Routley, R., and R. K. Meyer, ‘The semantics of entailment’, in H. Leblanc, (ed.), Truth, Syntax and Modality North Holland, Amsterdam, 1973, pp. 199–243.
Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, Relevant Logics and their Rivals 1, Ridgeview Publishing Company, California, 1982.
Scott, D., ‘Rules and derived rules’, in S. Stenlund, (ed.), Logical Theory and Semantical Analysis, Reidel, Dordrecht, 1974, pp. 147–161.
Slaney, J. K., and R. K. Meyer, ‘A structurally complete fragment of relevant logic’, Notre Dame Journal of Formal Logic 33 (1992), 561–566.
Sobociński, B., ‘Axiomatization of a partial system of three-valued calculus of propositions’, The Journal of Computing Systems 1 (1952), 23–55.
Sugihara, T., ‘Strict implication free from implicational paradoxes’, Memoirs of the Faculty of Liberal Arts, Fukui University, Series I 1955, 55–59.
Tamura, S., ‘The implicational fragment of R-mingle’, Proceedings of the Japan Academy 47 (1971), 71–75.
Tokarz, M., ‘Functions definable in Sugihara algebras and their fragments (I)’ and ‘(II)’, Studia Logica 34 (1975), 295–304, and 35 (1976), 279–283.
Tokarz, M., ‘Deduction theorems for RM and its extensions’, Studia Logica 38 (1979), 105–111.
Tokarz, M., Essays in matrix semantics of relevant logics, Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsawa, 1980.
Troelstra, A. S., Lectures on Linear Logic, CSLI Lecture Notes, No 29, 1992.
Urquhart, A., ‘The undecidability of entailment and relevant implication’, The Journal of Symbolic Logic 49 (1984), 1059–1073.
Ursini, A., ‘On subtractive varieties I, Algebra Universalis 31 (1994), 204–222.
Willard, R., ‘A finite basis theorem for residually finite, congruence meet-semidistributive varieties’, The Journal of Symbolic Logic 65 (2000), 187–200.
Wójcicki, R., Theory of Logical Calculi, Kluwer, Dordrecht, 1988.
Author information
Authors and Affiliations
Additional information
Special issue of Studia Logica: “Algebraic Theory of Quasivarieties” Presented by M. E. Adams, K. V. Adaricheva, W. Dziobiak, and A. V. Kravchenko
Rights and permissions
About this article
Cite this article
Blok, W.J., Raftery, J.G. Fragments of R-Mingle. Stud Logica 78, 59–106 (2004). https://doi.org/10.1007/s11225-005-0106-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11225-005-0106-8