Abstract
This paper illustrates how Priestley duality can be used in the transfer of an optimal natural duality from a minimal generating algebra for a quasi-variety to other generating algebras. Detailed calculations are given for the quasi-variety \(\mathbb{I}\mathbb{S}\mathbb{P}(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{4} )\) of Kleene algebras and the quasi-varieties \(B\) n of pseudocomplemented distributive lattices (n ≥ 1).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, M., and W. Dziobiak, (eds.), Studia Logica Special Issue on Priestley Duality, Studia Logica 56, Nos. 1–2, (1996).
Clark, D. M., and B. A. Davey, Natural Dualities for the Working Algebraist, Cambridge University Press, Cambridge, 1998.
Cornish, W. H., and P. R. Fowler, ‘Coproducts of de Morgan algebras’, Bull. Austral. Math. Soc. 16 (1977), 1–13.
Davey, B. A., ‘Topological duality for prevarieties of universal algebras’, in G. C. Rota, (ed.), Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, Vol. 1, Academic Press, New York, 1978, pp. 61–99.
Davey, B. A., ‘Dualities for Stone algebras, double Stone algebras,and relative Stone algebras’, Colloq. Math. 46 (1982), 1–14.
Davey, B. A., ‘Duality theory on ten dollars a day’, in I. G. Rosenberg and G. Sabidussi, (eds.), Algebras and Orders, NATO Advanced Study Institute Series, Series C, Vol. 389, Kluwer Academic Publishers, 1993, pp. 71–111.
Davey, B. A., ‘Dualisability in general and endodualisability in particular’, in A. Ursini and P. Aglianò, (eds.), Logic and algebra (Pontignano, 1994), Lecture Notes in Pure and Appl. Math. 180, Dekker, New York, 1996, 437–455.
Davey, B. A., and M. Haviar, ‘Transferring optimal dualities: theory and practice’, J. Austral. Math. Soc. 74 (2003), 393–420.
Davey, B. A., M. Haviar, and H. A. Priestley, ‘Endoprimal distributive lattices are endodualisable’, Algebra Universalis 34 (1995), 444–453.
Davey, B. A., M. Haviar, and H. A. Priestley, ‘The syntax and semantics of entailment in duality theory’, J. Symbolic Logic 60 (1995), 1087–1114.
Davey, B. A., M. Haviar, and H. A. Priestley ‘Kleene algebras: a case-study of clones and dualities from endomorphisms’, Acta Sci. Math. (Szeged) 67 (2001), 77–103.
Davey, B. A., M. Haviar, and R. Willard, Full does not imply strong, does it?, La Trobe University preprint, 2002.
Davey, B. A., and J. G. Pitkethly, ‘Endoprimal algebras’, Algebra Universalis 38 (1997), 266–288.
Davey, B. A., and H. A. Priestley, ‘Generalized piggyback dualities and applications to Ockham algebras’, Houston Math. J. 13 (1987), 151–98.
Davey, B. A., and H. A. Priestley, ‘Optimal natural dualities’, Trans. Amer. Math. Soc. 338 (1993), 655–677.
Davey, B. A., and H. A. Priestley, ‘Optimal natural dualities II: general theory’, Trans. Amer. Math. Soc. 348 (1996), 3673–3711.
Davey, B. A., and H. A. Priestley, ‘Optimal natural dualities for varieties of Heyting algebras’, Studia Logica 56 (1996), 67–96.
Davey, B. A., and H. Werner, ‘Dualities and equivalences for varieties of algebras’, in A. P. Huhn and E. T. Schmidt, (eds.), Contributions to Lattice Theory (Szeged, 1980), Coll. Math. Soc. János Bolyai 33, North-Holland, Amsterdam, 1983, pp. 101–275.
Haviar, M., and H. A. Priestley, ‘A criterion for a finite endoprimal algebra to be endodualisable’, Algebra Universalis 42 (1999), 183–193.
Jalali, A., ‘A representation of Kleene algebras and the characterisation of projective Kleene and de Morgan algebras’, Rend. Circ. Mat. Palermo (2), Suppl. No. 29 (1992), 435–474.
Márki, L., and R. Pöschel, ‘Endoprimal distributive lattices’, Algebra Universalis 30 (1993), 272–274.
Pontryagin, L. S., ‘Sur les groupes abéliens continus’, C. R. Acad. Sci. Paris 198 (1934), 238–240.
Pontryagin, L. S., ‘The theory of topological commutative groups’, Ann. Math. 35 (1934), 361–388.
Pontryagin, L. S., Topological Groups, second edition, Gordon and Breach, NewYork, 1966.
Priestley, H. A., ‘Representation of distributive lattices by means of ordered Stone spaces’, Bull. London Math. Soc. 2 (1972), 186–190.
Priestley, H. A., ‘The construction of spaces dual to pseudocomplemented distributive lattices’, Quart J. Math. Oxford Ser. (2) 26 (1975), 215–228.
Priestley, H. A., ‘Odrered sets and duality for distributive lattices’, in M. Pouzet and D. Richard, (eds.), Orders, Descriptions and Roles, North-Holland, Amsterdam, 1984, pp. 39–60.
Priestley, H. A., ‘Natural dualities for varieties of n-valued Łukasiewicz algebras’, Studia Logica 54 (1995), 333–370.
Priestley, H. A., ‘Varieties of distributive lattices with unary operations. I.’, J. Austral. Math. Soc. Ser. A 63 (1997), 165–207.
Priestley, H. A., and R. Santos, ‘Varieties of distributive lattices with unary operations. II.’, Portugal. Math. 55 (1998), 135–166.
Saramago, M., A study of natural dualities, including an analysis of the structure of failsets, Ph.D. thesis, University of Lisbon, 1998.
Saramago, M., ‘Some remarks on dualisability and endodualisability’, Algebra Universalis 43 (2000), 197–212.
Saramago, M. J., and H. A. Priestley, ‘Optimal natural dualities: the structure of failsets’, Internat. J. Algebra Comput. 12 (2002), 407–436.
Stone, M. H., ‘The theory of representations for Boolean algebras’, Trans. Amer. Math. Soc. 4 (1936), 37–111.
Wegener, C. B., Natural dualities for varieties generated by lattice-structured algebras, PhD Thesis, University of Oxford, 1999.
Author information
Authors and Affiliations
Additional information
Special issue of Studia Logica: “Algebraic Theory of Quasivarieties” Presented by M. E. Adams, K. V. Adaricheva, W. Dziobiak, and A. V. Kravchenko
Rights and permissions
About this article
Cite this article
Davey, B.A., Haviar, M. Applications of Priestley duality in transferring optimal dualities. Stud Logica 78, 213–236 (2004). https://doi.org/10.1007/s11225-005-3236-0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11225-005-3236-0