Abstract
According to Suszko’s Thesis, there are but two logical values, true and false. In this paper, R. Suszko’s, G. Malinowski’s, and M. Tsuji’s analyses of logical twovaluedness are critically discussed. Another analysis is presented, which favors a notion of a logical system as encompassing possibly more than one consequence relation.
[A] fundamental problem concerning many-valuedness is to know what it really is.
[13, p. 281]
Similar content being viewed by others
References
Belnap, N. D., ‘How a computer should think’, in G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press Ltd., Stocksfield, 1977, pp. 30–55.
Belnap, N. D., ‘A useful four-valued logic, in J. M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel Publishing Company, Dordrecht, 1977, 8–37.
van Benthem J. (1984) ‘Possible Worlds Semantics, a Research Program that Cannot Fail?’. Studia Logica 43, 379–393
Béziau, J.-Y., Universal Logic, in T. Childers and O. Majer (eds.), Proceedings Logica’ 94, Czech Academy of Sciences, Prague, 1994, pp. 73–93.
Béziau, J.-Y., ‘What is Many-Valued Logic?’, in Proceedings of the 27th International Symposium on Multiple-Valued Logic, IEEE Computer Society Press, Los Alamitos/Cal., 1997, pp. 117–121.
Béziau, J.-Y., ‘Recherches sur la logique abstraite: les logiques normales’, Acta Universitatis Wratislaviensis no. 2023, Logika 18 (1998), 105–114.
Blamey S., and L. Humberstone (1991) ‘A Perspective on Modal Sequent Logic’. Publications of the Research Institute for Mathematical Sciences, Kyoto University 27, 763–782
Brown B., and P. Schotch (1999) ‘Logic and Aggregation’. Journal of Philosophical Logic 28, 265–287
Caleiro C., Carnielli W., Coniglio M., and Marcos J. (2005). ‘Two’s company: “The humbug of many logical values"’. In: Beziau J.-Y. (eds). Logica Universalis. Birkhäuser, Basel, pp. 169–189
Caleiro, C., W. Carnielli, M. Coniglio, and J. Marcos, ‘Suszko’s Thesis and dyadic semantics’, preprint, http://www.cs.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic1.pdf.
Caleiro, C., W. Carnielli, M. Coniglio, and J. Marcos, ‘Dyadic semantics for many-valued logics’, preprint, http://www.cs.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic2.pdf.
Cook R. (2005) What’s wrong with tonk (?)’. Journal of Philosophical Logic 34, 217–226
da Costa N., Béziau J.-Y., and Bueno O. (1996) ‘Malinowski and Suszko on manyvalued logics: On the reduction of many-valuedness to two-valuedness’. Modern Logic 6, 272–299
Curry H.B. (1963). Foundations of Mathematical Logic. McGraw-Hill, New York
Czelakowski J. (2001). Protoalgebraic Logics. Kluwer Academic Publishers, Dordrecht
Devyatkin, L., ‘Non-classical definitions of logical consequence’ (in Russian), Smirnov’s Readings in Logic. Fifth Conference, Moscow (2007), 26–27.
Dunn J.M. (1976) ‘Intuitive semantics for first-degree entailment and ‘coupled trees". Philosophical Studies 29, 149–168
Dunn J.M. (2000) ‘Partiality and its dual’. Studia Logica 66, 5–40
Frankowski S. (2004) ‘Formalization of a plausible inference’. Bulletin of the Section of Logic 33, 41–52
Frankowski S. (2004) ‘p-consequence versus q-consequence’. Bulletin of the Section of Logic 33, 197–207
Gottwald S. (1989). Mehrwertige Logik. Eine Einführung in Theorie und Anwendungen. Akademie-Verlag, Berlin
Gottwald S. (2001). A Treatise on Many-valued Logic. Research Studies Press, Baldock
Jennings R., and Schotch P. (1984) ‘The Preservation of Coherence’. Studia Logica 43, 89–106
Malinowski G. (1990) ‘Q-Consequence Operation’. Reports on Mathematical Logic 24, 49–59
Malinowski G. (1990) ‘Towards the Concept of Logical Many-Valuedness’. Folia Philosophica 7, 97–103
Malinowski G. (1993). Many-valued Logics. Clarendon Press, Oxford
Malinowski G. (1994) ‘Inferential Many-Valuedness’. In: Jan Woleński (eds). Philosophical Logic in Poland. Kluwer Academic Publishers, Dordrecht, pp. 75–84
Malinowski G. (2001) ‘Inferential Paraconsistency’. Logic and Logical Philosophy 8, 83–89
Malinowski G. (2004) ‘Inferential Intensionality’. Studia Logica 76, 3–16
Muskens R. (1999) ‘On Partial and Paraconsistent Logics’. Notre Dame Journal of Formal Logic 40, 352–374
Rescher N. (1969). Many-Valued Logic. McGraw-Hill, New York
Routley R. (1975) Universal Semantics?’. Journal of Philosophical Logic 4, 327–356
Schröter K. (1955) ‘Methoden zur Axiomatisierung beliebiger Aussagen- und Prädikatenkalküle’. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 1, 241–251
Scott D. (1973) Background to Formalization’. In: Leblanc H. (eds) Truth, Syntax and Modality. North-Holland, Amsterdam, pp. 244–273
Shramko Y., Dunn J.M., and Takenaka T. (2001) ‘The trilattice of constructive truth values’. Journal of Logic and Computation 11, 761–788
Shramko Y., and Wansing H. (2005) ‘Some useful 16-valued logics: how a computer network should think’. Journal of Philosophical Logic 34, 121–153
Shramko Y., and Wansing H. (2005) ‘The Logic of Computer Networks’ (in Russian). Logical Studies (Moscow) 12, 119–145
Shramko Y., and Wansing H. (2006) ‘Hypercontradictions, generalized truth values, and logics of truth and falsehood’. Journal of Logic, Language and Information 15, 403–424
Suszko R. (1977) ‘The Fregean axiom and Polish mathematical logic in the 1920’s’. Studia Logica 36, 373–380
Tsuji M. (1998) ‘Many-valued logics and Suszko’s Thesis revisited’. Studia Logica 60, 299–309
Urquhart A. (1973) ‘An interpretation of many-valued logic’. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 19, 111–114
Wansing H. (2006) ‘Connectives stranger than tonk’. Journal of Philosophical Logic 35, 653–660
Wansing, H., and Y. Shramko, ‘Harmonious many-valued propositional logics and the logic of computer networks’, to appear in C. Dégremont, L. Keiff and H. Rückert (eds.), Festschrift dedicated to Shahid Rahman, College Publications, London, 2008.
Wójcicki R. (1970) ‘Some Remarks on the Consequence Operation in Sentential Logics’. Fundamenta Mathematicae 68, 269–279
Wójcicki R. (1988). Theory of Logical Calculi: Basic Theory of Consequence Operations. Kluwer Academic Publishers, Dordrecht
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum for this article can be found at http://dx.doi.org/10.1007/s11225-008-9121-x
Rights and permissions
About this article
Cite this article
Wansing, H., Shramko, Y. Suszko’s Thesis, Inferential Many-valuedness, and the Notion of a Logical System. Stud Logica 88, 405–429 (2008). https://doi.org/10.1007/s11225-008-9111-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-008-9111-z