Skip to main content
Log in

A Categorical Approach to Probability Theory

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

First, we discuss basic probability notions from the viewpoint of category theory. Our approach is based on the following four “sine quibus non” conditions: 1. (elementary) category theory is efficient (and suffices); 2. random variables, observables, probability measures, and states are morphisms; 3. classical probability theory and fuzzy probability theory in the sense of S. Gudder and S. Bugajski are special cases of a more general model; 4. a good model allows natural modifications.

Second, we show that the category ID of D-posets of fuzzy sets and sequentially continuous D-homomorphisms allows to characterize the passage from classical to fuzzy events as the minimal generalization having nontrivial quantum character: a degenerated state can be transported to a nondegenerated one.

Third, we describe a general model of probability theory based on the category ID so that the classical and fuzzy probability theories become special cases and the model allows natural modifications.

Finally, we present a modification in which the closed unit interval [0,1] as the domain of traditional states is replaced by a suitable simplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek J. (1983) Theory of Mathematical Structures. Reidel, Dordrecht

    Google Scholar 

  2. Bugajski S. (2001) ‘Statistical maps I. Basic properties’. Math. Slovaca 51: 321–342

    Google Scholar 

  3. Bugajski S. (2001) ‘Statistical maps II. Operational random variables’. Math. Slovaca 51: 343–361

    Google Scholar 

  4. Chovanec, F., and R. Frič, ‘States as morphisms’, Internat. J. Theoret. Phys., Published online: 30 December 2009, DOI 10.1007/s10773-009-0234-4.

  5. Chovanec, F., and F. Kôpka, ‘D-posets’, in D. M. Gabbay K. Engesser, and D. Lehmann, (eds.), Handbook of Quantum Logic and Quantum Structures: Quantum Structures, Elsevier, Amsterdam, 2007, pp. 367–428.

  6. Dvurečenskij, A., and S. Pulmannová, New Trends in Quantum Structures, Kluwer Academic Publ., Ister Science, Dordrecht, Bratislava, 2000.

  7. Foulis D.J., Bennett M.K. (1994) ‘Effect algebras and unsharp quantum logics’. Found. Phys. 24: 1331–1352

    Article  Google Scholar 

  8. Frič R. (2002) ‘Convergence and duality’. Appl. Categorical Structures. 10: 257–266

    Article  Google Scholar 

  9. Frič R. (2002) ‘Łukasiewicz tribes are absolutely sequentially closed bold algebras’. Czechoslovak Math. J. 52: 861–874

    Article  Google Scholar 

  10. Frič R. (2005) ‘Extension of measures: a categorical approach’. Math. Bohemica 130: 397–407

    Google Scholar 

  11. Frič R. (2005) ‘Remarks on statistical maps and fuzzy (operational) random variables’. Tatra Mountains Mathematical Publ. 30: 21–34

    Google Scholar 

  12. Frič R. (2007) ‘Statistical maps: a categorical approach’. Math. Slovaca 57: 41–57

    Article  Google Scholar 

  13. Frič R. (2009) ‘Extension of domains of states’. Soft Comput. 13: 63–70

    Article  Google Scholar 

  14. Frič, R., ‘States on bold algebras: categorical aspects’, Journal of Logic and Computation, Advance Access published March 13, 2009; DOI 10.1093/logcom/exp014.

  15. Frič, R., and M. Papčo, ‘On probability domains’, Internat. J. Theoret. Phys., Published online: 15 October 2009, DOI 10.1007/s10773-009-0162-3.

  16. Goguen J.A. (1991) ‘A categorical manifesto’. Math. Struct. in Comp. Science 1: 49–67

    Article  Google Scholar 

  17. Gudder S. (1998) ‘Fuzzy probability theory’. Demonstratio Math. 31: 235–254

    Google Scholar 

  18. Kôpka F. (1992) ‘D-posets of fuzzy sets’. Tatra Mountains Mathematical Publ. 1: 83–87

    Google Scholar 

  19. Kôpka F., Chovanec F. (1994) ‘D-posets’. Math. Slovaca 44: 21–34

    Google Scholar 

  20. Mesiar R. (1992) ‘Fuzzy sets and probability theory’. Tatra Mountains Mathematical Publ. 1: 105–123

    Google Scholar 

  21. Mundici, D., and B. Riečan, ‘Probability on MV -algebras’, in E. Pap, (ed.), Handbook of Measure Theory, Vol. II, North-Holland, Amsterdam, 2002, pp. 869–910.

  22. Novák J. (1968) ‘On sequential envelopes defined by means of certain classes of functions’. Czechoslovak Math. J. 18: 450–456

    Google Scholar 

  23. Papčo M. (2004) M. ‘On measurable spaces and measurable maps’. Tatra Mt. Math. Publ. 28: 125–140

    Google Scholar 

  24. Papčo M. (2005) ‘On fuzzy random variables: examples and generalizations’. Tatra Mt. Math. Publ. 30: 175–185

    Google Scholar 

  25. Papčo M. (2008) ‘On effect algebras of fuzzy sets’. Soft Comput. 12: 373–379

    Google Scholar 

  26. Riečan, B., and T. Neubrunn, Integral, Measure, and Ordering, Kluwer Acad. Publ., Dordrecht Boston London, 1997.

  27. Zadeh L.A. (1968) ‘Probability measures of fuzzy events’. J. Math. Anal. Appl. 23: 421–427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Frič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frič, R., Papčo, M. A Categorical Approach to Probability Theory. Stud Logica 94, 215–230 (2010). https://doi.org/10.1007/s11225-010-9232-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9232-z

Keywords

Navigation